Carbon Nanotubes Coating on LiNi0.8Co0.15Al0.05O2 as Cathode Materials for Lithium Battery

被引:23
作者
Yu, Jianlin [1 ]
Li, Haohua [1 ]
Zhang, Guoqing [1 ]
Li, Xinxi [1 ]
Huang, Jin [1 ]
Li, Chengfei [1 ]
Wei, Chao [1 ]
Xiao, Changren [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
关键词
Lithium ion batteries; Cathode; LiNi0.8Co0.15Al0.05O2; Carbon nanotubes; Electrochemical performance; ELECTROCHEMICAL PROPERTIES; CYCLING PERFORMANCE; ELECTRODE; LINI0.8CO0.16AL0.04O2; LINI0.5MN1.5O4; CO-3(PO4)(2); TEMPERATURE; IMPROVEMENT; OXIDE;
D O I
10.20964/2017.12.04
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The carbon nanotubes (CNTs) have been utilized as a coating for LiNi0.8Co0.15Al0.05O2 (NCA) synthesized by calcining Ni-Co-Al composite hydroxide as a strategy to improve the electrochemical performance of cathode. The samples coated with CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy, Raman spectroscopy, and elemental analyses. The CNTs coated LiNi0.8Co0.15Al0.05O2 (CNTs-NCA) exhibited an initial discharge capacity of 205.6 mAh g(-1) and a highly improved discharge capacity retention (91.7%) after 80 cycles between 2.8 and 4.3V (versus Li/Li+), compared with the pristine NCA (P-NCA), which presented an initial discharge capacity of 201.2 mAh g(-1) and relative lower discharge retention of 84.4%. In addition, CV and EIS analysis demonstrated the CNTs coating NCA improved the surface electrochemical stability and rate capability, whereas the pristine NCA formed a thick resistive solid electrolyte interphase film by enhancing the surface side reactions. The improved electrochemical performance can be attributed to shorten the length of lithium transport path and improve the electronic conductivity of NCA.
引用
收藏
页码:11892 / 11903
页数:12
相关论文
共 34 条
[1]   Effect of thermal treatment on the structure of multi-walled carbon nanotubes [J].
Behler, K. ;
Osswald, S. ;
Ye, H. ;
Dimovski, S. ;
Gogotsi, Y. .
JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (05) :615-625
[2]   Deposition of diamond-like carbon films on aluminum in the liquid phase by an electrochemical method [J].
Cai, K ;
Cao, CB ;
Zhu, HS .
CARBON, 1999, 37 (11) :1860-1862
[3]   Significant Improvement of LiNi0.8Co0.15Al0.05O2 Cathodes at 60°C by SiO2 Dry Coating for Li-Ion Batteries [J].
Cho, Yonghyun ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :A625-A629
[4]   LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 Precursors [J].
Cho, Younghyun ;
Lee, Yong-Seok ;
Park, Seul-A ;
Lee, Youngil ;
Cho, Jaephil .
ELECTROCHIMICA ACTA, 2010, 56 (01) :333-339
[5]  
Chung YM, 2009, B KOREAN CHEM SOC, V30, P1733
[6]   Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen [J].
Du, Qing-Xia ;
Tang, Zhong-Feng ;
Ma, Xiao-Hang ;
Zang, Yong ;
Sun, Xin ;
Shao, Yu ;
Wen, Zhao-Yin ;
Chen, Chun-Hua .
SOLID STATE IONICS, 2015, 279 :11-17
[7]   Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2:: Calcination temperature dependence [J].
Fujii, Yasuhiro ;
Miura, Hiroshi ;
Suzuki, Naoto ;
Shoji, Takayuki ;
Nakayama, Noriaki .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :894-903
[8]   Differential scanning calorimetry analysis of an enhanced LiNi0.8Co0.2O2 cathode with single wall carbon nanotube conductive additives [J].
Ganter, Matthew J. ;
DiLeo, Roberta A. ;
Schauerman, Christopher M. ;
Rogers, Reginald E. ;
Raffaelle, Ryne P. ;
Landi, Brian J. .
ELECTROCHIMICA ACTA, 2011, 56 (21) :7272-7277
[9]   Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol-gel method [J].
Han, CJ ;
Yoon, JH ;
Cho, W ;
Jang, H .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :132-138
[10]   Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH [J].
Hu, Guorong ;
Liu, Wanmin ;
Peng, Zhongdong ;
Du, Ke ;
Cao, Yanbing .
JOURNAL OF POWER SOURCES, 2012, 198 :258-263