Stable isotopic compositions in Australian precipitation
被引:60
|
作者:
Liu, Jianrong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R ChinaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Liu, Jianrong
[1
,2
]
Fu, Guobin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
CSIRO Land & Water, Wembley, WA 6913, AustraliaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Fu, Guobin
[1
,3
]
Song, Xianfang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Song, Xianfang
[1
]
Charles, Stephen P.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
CSIRO Land & Water, Wembley, WA 6913, AustraliaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Charles, Stephen P.
[1
,3
]
Zhang, Yinghua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Zhang, Yinghua
[1
]
Han, Dongmei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Han, Dongmei
[1
]
Wang, Shiqin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
Wang, Shiqin
[1
]
机构:
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
[3] CSIRO Land & Water, Wembley, WA 6913, Australia
Stable deuterium (delta D) and oxygen-18 (delta O-18) isotopes in 1962 to 2002 precipitation from the seven Australian stations of the Global Network of Isotopes in Precipitation (GNIP) were used to investigate isotope characteristics including temporal and spatial distributions across different regions of Australia. On the basis of 1534 samples, the local meteoric water line (LMWL) was established as delta D = 7.10 delta O-18 + 8.21. delta O-18 showed a depletion trend from north and south to central Australia (a continental effect) and from west to east. Precipitation amount effects were generally greater than temperature effects, with quadratic or logarithmic correlations describing delta/T and delta/P better than linear relationships. Nonlinear stepwise regression was used to determine the significant meteorological control factors for each station, explaining about 50% or more of the delta O-18 variations. Geographical control factors for delta O-18 were given by the relationship delta O-18 (parts per thousand) = -0.005 longitude (degrees) - 0.034 latitude (degrees)-0.003 altitude (m) - 4.753. Four different types of d-excess patterns demonstrated particular precipitation formation conditions for four major seasonal rainfall zones. Finally, wavelet coherence (WTC) between delta O-18 and SOI confirmed that the influence of ENSO decreased from east and north to west Australia.