Layer-wise relevance propagation for backbone identification in discrete fracture networks

被引:5
作者
Berrone, Stefano [1 ,3 ,4 ]
Della Santa, Francesco [1 ,3 ,4 ]
Mastropietro, Antonio [1 ,3 ,5 ]
Pieraccini, Sandra [2 ,4 ]
Vaccarino, Francesco [1 ,3 ,6 ]
机构
[1] Politecn Torino, Dept Math Sci, Turin, Italy
[2] Politecn Torino, Dept Mech & Aerosp Engn, Turin, Italy
[3] Politecn Torino, SmartData PoliTO Ctr Big Data & Machine Learning, Turin, Italy
[4] INdAM GNCS Res Grp, Rome, Italy
[5] Addfor Ind Srl, Turin, Italy
[6] ISI Fdn, Turin, Italy
关键词
Layer-wise Relevance Propagation; Deep Learning; Neural Networks; Discrete Fracture Network; Feature selection; TRANSIENT DARCY FLOW; HYBRID MORTAR METHOD; STEADY-STATE METHOD; SOLVING FLOW; MODELING FLOW; POROUS-MEDIA; SIMULATIONS; MATRIX; COMPUTATION;
D O I
10.1016/j.jocs.2021.101458
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone.
引用
收藏
页数:16
相关论文
共 50 条
[1]  
Adler P.M, 1999, FRACTURES FRACTURE N
[2]   Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph [J].
Aldrich, Garrett ;
Hyman, Jeffrey D. ;
Karra, Satish ;
Gable, Carl W. ;
Makedonska, Nataliia ;
Viswanathan, Hari ;
Woodring, Jonathan ;
Hamann, Bernd .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (08) :1896-1909
[3]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[4]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[5]   Machine learning for flux regression in discrete fracture networks [J].
Berrone, S. ;
Della Santa, F. ;
Pieraccini, S. ;
Vaccarino, F. .
GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2021, 12 (01)
[6]   PARALLEL MESHING, DISCRETIZATION, AND COMPUTATION OF FLOW IN MASSIVE DISCRETE FRACTURE NETWORKS [J].
Berrone, S. ;
Scialo, S. ;
Vicini, F. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) :C317-C338
[7]   Advanced computation of steady-state fluid flow in Discrete Fracture-Matrix models: FEM–BEM and VEM–VEM fracture-block coupling [J].
Berrone S. ;
Borio A. ;
Fidelibus C. ;
Pieraccini S. ;
Scialò S. ;
Vicini F. .
GEM - International Journal on Geomathematics, 2018, 9 (2) :377-399
[8]   Performance Analysis of Multi-Task Deep Learning Models for Flux Regression in Discrete Fracture Networks [J].
Berrone, Stefano ;
Della Santa, Francesco .
GEOSCIENCES, 2021, 11 (03) :1-24
[9]   Refinement strategies for polygonal meshes applied to adaptive VEM discretization [J].
Berrone, Stefano ;
Borio, Andrea ;
D'Auria, Alessandro .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2021, 186 (186)
[10]   Towards effective flow simulations in realistic discrete fracture networks [J].
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 310 :181-201