Layer-wise relevance propagation for backbone identification in discrete fracture networks

被引:3
|
作者
Berrone, Stefano [1 ,3 ,4 ]
Della Santa, Francesco [1 ,3 ,4 ]
Mastropietro, Antonio [1 ,3 ,5 ]
Pieraccini, Sandra [2 ,4 ]
Vaccarino, Francesco [1 ,3 ,6 ]
机构
[1] Politecn Torino, Dept Math Sci, Turin, Italy
[2] Politecn Torino, Dept Mech & Aerosp Engn, Turin, Italy
[3] Politecn Torino, SmartData PoliTO Ctr Big Data & Machine Learning, Turin, Italy
[4] INdAM GNCS Res Grp, Rome, Italy
[5] Addfor Ind Srl, Turin, Italy
[6] ISI Fdn, Turin, Italy
关键词
Layer-wise Relevance Propagation; Deep Learning; Neural Networks; Discrete Fracture Network; Feature selection; TRANSIENT DARCY FLOW; HYBRID MORTAR METHOD; STEADY-STATE METHOD; SOLVING FLOW; MODELING FLOW; POROUS-MEDIA; SIMULATIONS; MATRIX; COMPUTATION;
D O I
10.1016/j.jocs.2021.101458
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Interpreting Convolutional Neural Networks via Layer-Wise Relevance Propagation
    Jia, Wohuan
    Zhang, Shaoshuai
    Jiang, Yue
    Xu, Li
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 457 - 467
  • [2] Explaining Therapy Predictions with Layer-wise Relevance Propagation in Neural Networks
    Yang, Yinchong
    Tresp, Volker
    Wunderle, Marius
    Fasching, Peter A.
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 152 - 162
  • [3] Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers
    Binder, Alexander
    Montavon, Gregoire
    Lapuschkin, Sebastian
    Mueller, Klaus-Robert
    Samek, Wojciech
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 63 - 71
  • [4] Evaluating Layer-wise Relevance Propagation Explainability Maps for Artificial Neural Networks
    Ranguelova, Elena
    Pauwels, Eric J.
    Berkhout, Joost
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, : 377 - 378
  • [5] Explanation of Multi-Label Neural Networks with Layer-Wise Relevance Propagation
    Bello, Marilyn
    Napoles, Gonzalo
    Vanhoof, Koen
    Garcia, Maria M.
    Bello, Rafael
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Sparse Explanations of Neural Networks Using Pruned Layer-Wise Relevance Propagation
    Sarmiento, Paulo Yanez
    Witzke, Simon
    Klein, Nadja
    Renard, Bernhard Y.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 336 - 351
  • [7] A Visual Designer of Layer-wise Relevance Propagation Models
    Huang, Xinyi
    Jamonnak, Suphanut
    Zhao, Ye
    Wu, Tsung Heng
    Xu, Wei
    COMPUTER GRAPHICS FORUM, 2021, 40 (03) : 227 - 238
  • [8] Layer-Wise Relevance Propagation with Conservation Property for ResNet
    Otsuki, Seitaro
    Iida, Tsumugi
    Doublet, Felix
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    Sugiura, Komei
    COMPUTER VISION-ECCV 2024, PT XLIII, 2025, 15101 : 349 - 364
  • [9] Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation
    Iwana, Brian Kenji
    Kuroki, Ryohei
    Uchida, Seiichi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4176 - 4185
  • [10] ASL: Adversarial Attack by Stacking Layer-wise Relevance Propagation
    Wang, Pengju
    Liu, Jing
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 796 - 801