Timescales of interface-coupled dissolution-precipitation reactions on carbonates

被引:37
|
作者
Renard, Francois [1 ,2 ,3 ]
Royne, Anja [1 ,2 ]
Putnis, Christine V. [4 ,5 ]
机构
[1] Univ Oslo, Dept Geosci, Njord Ctr, Phys Geol Proc, Oslo, Norway
[2] Univ Oslo, Dept Phys, Njord Ctr, Phys Geol Proc, Oslo, Norway
[3] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, IRD,IFSTTAR,ISTerre, F-38000 Grenoble, France
[4] Univ Munster, Inst Mineral, Corrensstr 24, D-48149 Munster, Germany
[5] Curtin Univ, Dept Chem, Inst Geosci Res TIGeR, Perth, WA 6845, Australia
基金
欧盟地平线“2020”;
关键词
Carbonates; Atomic force microscopy; Dissolution; Precipitation; Boundary layer; Replacement; ATOMIC-FORCE MICROSCOPY; CALCITE; RATES; KINETICS; GROWTH; SEQUESTRATION; MECHANISMS; NUCLEATION; WATER; DOLOMITE;
D O I
10.1016/j.gsf.2018.02.013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy (AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals (calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid (e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe2+ ions that subsequently become oxidized and then precipitate in the form of Fe-III oxyhydroxides. For dolomite and magnesite, dissolution in the presence of pure water (undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution, the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system. (C) 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 50 条
  • [1] Timescales of interface-coupled dissolution-precipitation reactions oncarbonates
    Franois Renard
    Anja Ryne
    Christine VPutnis
    Geoscience Frontiers, 2019, 10 (01) : 17 - 27
  • [2] Timescales of interface-coupled dissolution-precipitation reactions oncarbonates
    Fran?ois Renard
    Anja R?yne
    Christine V.Putnis
    Geoscience Frontiers, 2019, (01) : 17 - 27
  • [3] A reactive transport modeling perspective on the dynamics of interface-coupled dissolution-precipitation
    Deng, Hang
    Poonoosamy, Jenna
    Molins, Sergi
    APPLIED GEOCHEMISTRY, 2022, 137
  • [4] A reactive transport modeling perspective on the dynamics of interface-coupled dissolution-precipitation
    Deng, Hang
    Poonoosamy, Jenna
    Molins, Sergi
    Applied Geochemistry, 2022, 137
  • [5] A mechanism of ion exchange by interface-coupled dissolution-precipitation in the presence of an aqueous fluid
    Putnis, Christine V.
    Putnis, Andrew
    JOURNAL OF CRYSTAL GROWTH, 2022, 600
  • [6] Control of silicate weathering by interface-coupled dissolution-precipitation processes at the mineral-solution interface
    Ruiz-Agudo, Encarnacion
    King, Helen E.
    Patino-Lopez, Luis D.
    Putnis, Christine V.
    Geisler, Thorsten
    Rodriguez-Navarro, Carlos
    Putnis, Andrew
    GEOLOGY, 2016, 44 (07) : 567 - 570
  • [7] Nonmonotonic Coupled Dissolution-Precipitation Reactions at the Mineral-Water Interface
    Rao, Ashit
    Ayirala, Subhash C.
    Alotaibi, Mohammed B.
    Duits, Michel H. G.
    Yousef, A. A.
    Mugele, Frieder
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
  • [8] Reactive fronts at the nanoscale: The nature and origin of a coupled dissolution-precipitation interface
    Putnis, A
    Putnis, CV
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A180 - A180
  • [9] Metal Sequestration through Coupled Dissolution-Precipitation at the Brucite-Water Interface
    Hoevelmann, Joern
    Putnis, Christine V.
    Benning, Liane G.
    MINERALS, 2018, 8 (08):
  • [10] ELLIPSOMETRY OF SUPERSATURATION AND ADSORPTION IN DISSOLUTION-PRECIPITATION REACTIONS
    SMITH, CG
    MULLER, RH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (08) : C353 - C353