Enhanced Feature Pyramid Network for Semantic Segmentation

被引:8
|
作者
Ye, Mucong [1 ]
Ouyang, Jingpeng [1 ]
Chen, Ge [1 ]
Zhang, Jing [1 ]
Yu, Xiaogang [1 ]
机构
[1] Beihang Univ, Coll Software, Beijing, Peoples R China
关键词
D O I
10.1109/ICPR48806.2021.9413224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-scale feature fusion has been an effective way for improving the performance of semantic segmentation. However, current methods generally fail to consider the semantic gaps between the shallow (low-level) and deep (high-level) features and thus the fusion methods may not be optimal. In this paper, to address the issues of the semantic gap between the feature from different layers, we propose a unified framework based on the U-shape encoder-decoder architecture, named Enhanced Feature Pyramid Network (EFPN). Specifically, the semantic enhancement module (SEM), edge extraction module (EEM), and context aggregation model (CAM) are incorporated into the decoder network to improve the robustness of the multi-level features aggregation. In addition, a global fusion model (GFM), which in the encoder branch is proposed to capture more semantic information in the deep layers and effectively transmit the high-level semantic features to each layer. Extensive experiments are conducted and the results show that the proposed framework achieves the state-of-the-art results on three public datasets, namely PASCAL VOC 2012, Cityscapes, and PASCAL Context. Furthermore, we also demonstrate that the proposed method is effective for other visual tasks that require frequent fusing features and upsampling.
引用
收藏
页码:3209 / 3216
页数:8
相关论文
共 50 条
  • [1] Enhanced-feature pyramid network for semantic segmentation
    Quyen, Van Toan
    Lee, Jong Hyuk
    Kim, Min Young
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 782 - 787
  • [2] Hybrid Feature based Pyramid Network for Nighttime Semantic Segmentation
    Li, Yuqi
    Ma, Yinan
    Wu, Jing
    Long, Chengnian
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 321 - 328
  • [3] FCPFNet: Feature Complementation Network with Pyramid Fusion for Semantic Segmentation
    Lei, Jingsheng
    Shu, Chente
    Xu, Qiang
    Yu, Yunxiang
    Yang, Shengying
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [4] FCPFNet: Feature Complementation Network with Pyramid Fusion for Semantic Segmentation
    Jingsheng Lei
    Chente Shu
    Qiang Xu
    Yunxiang Yu
    Shengying Yang
    Neural Processing Letters, 56
  • [5] Enhanced semantic feature pyramid network for small object detection
    Chen, Yuqi
    Zhu, Xiangbin
    Li, Yonggang
    Wei, Yuanwang
    Ye, Lihua
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 113
  • [6] SEFANet: Semantic enhanced with feature alignment network for semantic segmentation
    Wang, Dakai
    An, Wenhao
    Ma, Jianxin
    Wang, Li
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [7] Spatial Structure Preserving Feature Pyramid Network for Semantic Image Segmentation
    Yuan, Yuan
    Fang, Jie
    Lu, Xiaoqiang
    Feng, Yachuang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (03)
  • [8] Deformable attention-oriented feature pyramid network for semantic segmentation
    Lu, Lei
    Xiao, Yun
    Chang, Xiaojun
    Wang, Xuanhong
    Ren, Pengzhen
    Ren, Zhe
    KNOWLEDGE-BASED SYSTEMS, 2022, 254
  • [9] A feature pyramid network with adaptive fusion strategy and enhanced semantic information
    Qin, Longfei
    Pang, Wenchao
    Zhao, Dexin
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [10] FPANet: Feature pyramid aggregation network for real-time semantic segmentation
    Wu, Yun
    Jiang, Jianyong
    Huang, Zimeng
    Tian, Youliang
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3319 - 3336