More generalized groundwater model with space-time caputo Fabrizio fractional differentiation

被引:16
作者
Djida, Jean-Daniel [1 ]
Atangana, Abdon [2 ]
机构
[1] AIMS, Limbe Crystal Gardens, South West Regi, Cameroon
[2] Univ Free State, Inst Groundwater Studies, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa
关键词
groundwater flow equation; Caputo-Fabrizio fractional derivative; existence and uniqueness; EQUATIONS;
D O I
10.1002/num.22156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of the flow of water within a confined aquifer with fractional diffusion in space and fractional time derivative in the sense of Caputo-Fabrizio using the classical contraction Banach theorem. We also propose the numerical approximation of the model using the Crank-Nicolson numerical scheme. To check the effectiveness of the model, stability analysis of the numerical scheme for the new model is presented.(c) 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1616-1627, 2017
引用
收藏
页码:1616 / 1627
页数:12
相关论文
共 19 条
[1]   Flows between two parallel plates of couple stress fluids with time-fractional Caputo and Caputo-Fabrizio derivatives [J].
Akhtar, Shehraz .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (11)
[2]  
[Anonymous], ARAB J MATH SCI
[3]   On Fractional Orthonormal Polynomials of a Discrete Variable [J].
Area, I. ;
Djida, J. D. ;
Losada, J. ;
Nieto, Juan J. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]   New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative [J].
Atangana, Abdon ;
Alkahtanil, Badr Saad T. .
ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (01)
[7]   Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel [J].
Atangana, Abdon ;
Jose Nieto, Juan .
ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (10) :1-7
[8]  
Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201
[9]  
Ciarlet P., 2013, SOC IND APPL MATH
[10]  
Cloot A, 2006, WATER SA, V32, P1