Multiplication operators on the Bergman space via analytic continuation

被引:50
作者
Douglas, Ronald G. [1 ]
Sun, Shunhua [2 ]
Zheng, Dechao [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Jiaxing Univ, Inst Math, Jiaxing 314001, Zhejiang, Peoples R China
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Reducing subspaces; Multiplication operators; Blaschke products; TOEPLITZ-OPERATORS; REDUCING SUBSPACES; HARDY SPACE; COMMUTANT; BIDISK;
D O I
10.1016/j.aim.2010.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using the group-like property of local inverses of a finite Blaschke product phi, we will show that the largest C*-algebra in the commutant of the multiplication operator M(phi) by phi on the Bergman space is finite dimensional, and its dimension equals the number of connected components of the Riemann surface of phi(-1) o phi over the unit disk. If the order of the Blaschke product phi is less than or equal to eight, then every C*-algebra contained in the commutant of M(phi) is abelian and hence the number of minimal reducing subspaces of M(phi) equals the number of connected components of the Riemann surface of phi(-1) o phi over the unit disk. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:541 / 583
页数:43
相关论文
共 32 条
[1]   Beurling's theorem for the Bergman space [J].
Aleman, A ;
Richter, S ;
Sundberg, C .
ACTA MATHEMATICA, 1996, 177 (02) :275-310
[2]  
[Anonymous], 1979, COMPLEX ANAL
[3]  
[Anonymous], 1985, NE MATH J
[4]  
[Anonymous], 1985, CBMS REGIONAL C SER
[5]  
Artin M., 2011, Algebra
[6]  
BEARDON A, 2001, LONDON MATH SOC LECT, V287
[7]   ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :239-255
[8]  
BLISS G, 1933, AM MAT SOC C PUBL, V16
[9]  
Chern S.-S., 1999, LECT DIFFERENTIAL GE, V1
[10]  
Conway J.B., 1981, RES NOTES MATH, V51