Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

被引:69
作者
Biyikli, Necmi [1 ]
Haider, Ali [2 ,3 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, 371 Fairfield Way,U-4157 Storrs, Storrs, CT 06269 USA
[2] Bilkent Univ, Natl Nanotechnol Res Ctr UNAM, TR-06800 Ankara, Turkey
[3] Bilkent Univ, Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkey
关键词
atomic layer deposition; semiconductor; nanoscale; nanostructured; metal-oxide; IIInitride; self-limiting; ZNO THIN-FILMS; LOW-TEMPERATURE GROWTH; TIO2 NANOTUBE ARRAYS; ELECTROSPUN POLYMERIC NANOFIBERS; TUNGSTEN DISULFIDE NANOSHEETS; SENSITIZED SOLAR-CELLS; ALUMINUM NITRIDE FILMS; GAS-SENSING PROPERTIES; CORE-SHELL NANOFIBERS; SELF-LIMITING GROWTH;
D O I
10.1088/1361-6641/aa7ade
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.
引用
收藏
页数:52
相关论文
共 452 条
[1]   Titanium isopropoxide as a precursor for atomic layer deposition:: characterization of titanium dioxide growth process [J].
Aarik, J ;
Aidla, A ;
Uustare, T ;
Ritala, M ;
Leskelä, M .
APPLIED SURFACE SCIENCE, 2000, 161 (3-4) :385-395
[2]   MORPHOLOGY AND STRUCTURE OF TIO2 THIN-FILMS GROWN BY ATOMIC LAYER DEPOSITION [J].
AARIK, J ;
AIDLA, A ;
UUSTARE, T ;
SAMMELSELG, V .
JOURNAL OF CRYSTAL GROWTH, 1995, 148 (03) :268-275
[3]   Atomic layer deposition of TiO2 thin films from TiI4 and H2O [J].
Aarik, J ;
Aidla, A ;
Uustare, T ;
Kukli, K ;
Sammelselg, V ;
Ritala, M ;
Leskelä, M .
APPLIED SURFACE SCIENCE, 2002, 193 (1-4) :277-286
[4]   Atomic layer deposition of titanium dioxide from TiCl4 and H2O:: investigation of growth mechanism [J].
Aarik, J ;
Aidla, A ;
Mändar, H ;
Uustare, T .
APPLIED SURFACE SCIENCE, 2001, 172 (1-2) :148-158
[5]   Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water [J].
Aarik, J ;
Aidla, A ;
Sammelselg, V ;
Uustare, T ;
Ritala, M ;
Leskelä, M .
THIN SOLID FILMS, 2000, 370 (1-2) :163-172
[6]   Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: Growth of high-permittivity dielectrics with low leakage current [J].
Aarik, Jaan ;
Arroval, Tonis ;
Aarik, Lauri ;
Rammula, Raul ;
Kasikov, Aarne ;
Maendar, Hugo ;
Hudec, Boris ;
Husekova, Kristina ;
Froehlich, Karol .
JOURNAL OF CRYSTAL GROWTH, 2013, 382 :61-66
[7]   Atomic layer deposition of TiO2 from TiCl4 and O3 [J].
Aarik, Lauri ;
Arroval, Tonis ;
Rammula, Raul ;
Maendar, Hugo ;
Sammelselg, Vaino ;
Aarik, Jaan .
THIN SOLID FILMS, 2013, 542 :100-107
[8]   ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications [J].
Abou Chaaya, Adib ;
Bechelany, Mikhael ;
Balme, Sebastien ;
Miele, Philippe .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) :20650-20658
[9]   Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study [J].
Acharya, Ananta R. ;
Thoms, Brian D. ;
Nepal, Neeraj ;
Eddy, Charles R., Jr. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (02)
[10]   Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD" [J].
Ahvenniemi, Esko ;
Akbashev, Andrew R. ;
Ali, Saima ;
Bechelany, Mikhael ;
Berdova, Maria ;
Boyadjiev, Stefan ;
Cameron, David C. ;
Chen, Rong ;
Chubarov, Mikhail ;
Cremers, Veronique ;
Devi, Anjana ;
Drozd, Viktor ;
Elnikova, Liliya ;
Gottardi, Gloria ;
Grigoras, Kestutis ;
Hausmann, Dennis M. ;
Hwang, Cheol Seong ;
Jen, Shih-Hui ;
Kallio, Tanja ;
Kanervo, Jaana ;
Khmelnitskiy, Ivan ;
Kim, Do Han ;
Klibanov, Lev ;
Koshtyal, Yury ;
Krause, A. Outi I. ;
Kuhs, Jakob ;
Kaerkkaenen, Irina ;
Kaariainen, Marja-Leena ;
Kaariainen, Tommi ;
Lamagna, Luca ;
Lapicki, Adam A. ;
Leskela, Markku ;
Lipsanen, Harri ;
Lyytinen, Jussi ;
Malkov, Anatoly ;
Malygin, Anatoly ;
Mennad, Abdelkader ;
Militzer, Christian ;
Molarius, Jyrki ;
Norek, Malgorzata ;
Ozgit-Akgun, Cagla ;
Panov, Mikhail ;
Pedersen, Henrik ;
Piallat, Fabien ;
Popov, Georgi ;
Puurunen, Riikka L. ;
Rampelberg, Geert ;
Ras, Robin H. A. ;
Rauwel, Erwan ;
Roozeboom, Fred .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (01)