Further Results on Differential Stability of Convex Optimization Problems

被引:14
作者
Duong Thi Viet An [1 ,2 ]
Yao, Jen-Chih [3 ,4 ]
机构
[1] Thai Nguyen Univ, Dept Math & Informat, Coll Sci, Thai Nguyen City, Vietnam
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[4] China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
关键词
Parametric convex programming; Optimal value function; Subdifferential; Singular subdifferential; Aubin's regularity condition; INCLUSION CONSTRAINTS; MARGINAL FUNCTION;
D O I
10.1007/s10957-016-0900-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
As a complement to a recent paper by An and Yen (Appl Anal 94:108-128, 2015) on subdifferentials of the optimal value function in parametric convex programming under inclusion constraints and functional constraints, this paper studies the differential stability of convex optimization problems under a regularity condition of Aubin's type (Aubin in Optima and equilibria: an introduction to nonlinear analysis. Springer, New York, 1998). By a suitable sum rule for convex subdifferentials, we obtain exact formulas for the subdifferential and singular subdifferential of the optimal value function. Illustrative examples and a detailed comparison of our results with those of the above-mentioned paper are given.
引用
收藏
页码:28 / 42
页数:15
相关论文
共 17 条
[1]   Differential stability of convex optimization problems under inclusion constraints [J].
An, D. T. V. ;
Yen, N. D. .
APPLICABLE ANALYSIS, 2015, 94 (01) :108-128
[2]  
Aubin J., 1998, Optima and equilibria: an introduction to nonlinear analysis
[3]  
AUSLENDER A, 1979, MATH PROGRAM STUD, V10, P29, DOI 10.1007/BFb0120841
[4]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[5]   ON IMPLICIT FUNCTION THEOREMS FOR SET-VALUED MAPS AND THEIR APPLICATION TO MATHEMATICAL-PROGRAMMING UNDER INCLUSION CONSTRAINTS [J].
DIEN, PH ;
YEN, ND .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 24 (01) :35-54
[6]  
Fomin S. V, 1975, INTRO REAL ANAL
[7]  
GAUVIN J, 1982, MATH PROGRAM STUD, V19, P101, DOI 10.1007/BFb0120984
[8]  
GAUVIN J, 1984, MATH PROGRAM STUD, V21, P69
[9]   ON THE MARGINAL FUNCTION IN NONLINEAR-PROGRAMMING [J].
GOLLAN, B .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (02) :208-221
[10]  
Ioffe AD., 1979, Studies in Mathematics and its Applications