Supervised Learning via Ensemble Tensor Completion

被引:1
作者
Kargas, Nikos [1 ]
Sidiropoulos, Nicholas D. [2 ]
机构
[1] Univ Minnesota, Dept ECE, Minneapolis, MN 55455 USA
[2] Univ Virginia, Dept ECE, Charlottesville, VA USA
来源
2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2020年
关键词
Supervised Learning; Tensor Completion; Ensemble Learning; Canonical Polyadic Decomposition;
D O I
10.1109/IEEECONF51394.2020.9443399
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning nonlinear functions from input-output data pairs is one of the most fundamental problems in machine learning. Recent work has formulated the problem of learning a general nonlinear multivariate function of discrete inputs, as a tensor completion problem with smooth latent factors. We build upon this idea and utilize two ensemble learning techniques to enhance its prediction accuracy. We showcase the effectiveness of the proposed ensemble models on several regression tasks and report significant improvements compared to the single model.
引用
收藏
页码:196 / 199
页数:4
相关论文
共 16 条
  • [1] Blondel M., 2016, INT C MACHINE LEARNI, P850
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] Freund Y., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P148
  • [4] Greedy function approximation: A gradient boosting machine
    Friedman, JH
    [J]. ANNALS OF STATISTICS, 2001, 29 (05) : 1189 - 1232
  • [5] Hastie T., 2009, The Elements of Statistical Learning - Data Mining, Inference and Prediction, DOI [DOI 10.1007/978-0-387-84858-7, DOI 10.1007/B94608]
  • [6] Kargas N., 2020, P 34 AAAI C ART INT
  • [7] Lichman M, 2013, UCI MACHINE LEARNING
  • [8] Exponential machines
    Novikov, A.
    Trofimov, M.
    Oseledets, I
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2018, 66 (06) : 789 - 797
  • [9] TENSOR-TRAIN DECOMPOSITION
    Oseledets, I. V.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2295 - 2317
  • [10] Paszke A, 2019, ADV NEUR IN, V32