Positive solutions of fourth-order boundary value problems with two parameters

被引:201
作者
Li, YX [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
关键词
positive solution; cone; fixed point index;
D O I
10.1016/S0022-247X(03)00131-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the existence results of positive solutions are obtained for fourth-order boundary value problem u((4)) + betau" - alphau = f(t, u), 0 < t < 1, u(0) = u(1) = u"(0) = u"(1) = 0, where f : [0, 1] x R+ --> R+ is continuous, alpha, beta is an element of R and satisfy beta < 2pi(2), alpha greater than or equal to -beta(2)/4, alpha/pi(4) + beta/pi(2) < 1. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 11 条
[1]   EXISTENCE AND UNIQUENESS THEOREMS FOR 4TH-ORDER BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 116 (02) :415-426
[2]  
Agarwal R., 1989, DIFFERENTIAL INTEGRA, V2, P91
[3]  
[Anonymous], APPL ANAL, DOI DOI 10.1080/00036819508840401
[4]   The method of lower and upper solutions for a bending of an elastic beam equation [J].
Bai, ZB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (01) :195-202
[5]  
De Coster C., 1994, INT J MATH MATH SCI, V17, P725, DOI 10.1155/s0161171294001031
[6]   EXISTENCE FOR A 4TH-ORDER BOUNDARY-VALUE PROBLEM UNDER A 2-PARAMETER NONRESONANCE CONDITION [J].
DELPINO, MA ;
MANASEVICH, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :81-86
[7]  
GUO DJ, 1988, NONLINEAR PROBLEMS
[8]  
Gupta C. P., 1988, Applicable Analysis, V26, P289, DOI 10.1080/00036818808839715
[10]  
Ma RY, 1997, J MATH ANAL APPL, V215, P415