Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics

被引:70
作者
Li, Dan [1 ]
Li, Yujuan [1 ]
Yang, Shengjie [1 ]
Lu, Jing [1 ]
Jin, Xiao [1 ]
Wu, Min [1 ]
机构
[1] Guangan men Hosp, China Acad Chinese Med Sci, Beijing 100053, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Diet; Epigenetics; Gut microbiota; Microbiota-derived metabolites; Metabolic diseases; HIGH-FAT-DIET; RANDOMIZED DOUBLE-BLIND; DNA METHYLATION; FIBER SUPPLEMENTATION; HISTONE MODIFICATIONS; MEDITERRANEAN DIET; INSULIN-RESISTANCE; BODY-COMPOSITION; IMPACT; ASSOCIATIONS;
D O I
10.1016/j.biopha.2022.113290
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The prevalence of metabolic diseases, including obesity, dyslipidemia, type 2 diabetes mellitus (T2DM), and nonalcoholic fatty liver disease (NAFLD), is a severe burden in human society owing to the ensuing high morbidity and mortality. Various factors linked to metabolic disorders, particularly environmental factors (such as diet and gut microbiota) and epigenetic modifications, contribute to the progression of metabolic diseases. Dietary components and habits regulate alterations in gut microbiota; in turn, microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), are influenced by diet. Interestingly, diet-derived microbial metabolites appear to produce substrates and enzymatic regulators for epigenetic modifications (such as DNA methylation, histone modifications, and non-coding RNA expression). Epigenetic changes mediated by microbial metabolites participate in metabolic disorders via alterations in intestinal permeability, immune responses, inflammatory reactions, and insulin resistance. In addition, microbial metabolites can trigger inflammatory immune responses and microbiota dysbiosis by directly binding to G-protein-coupled receptors (GPCRs). Hence, diet-gut microbiota-epigenetics may play a role in metabolic diseases. However, their complex relationships with metabolic diseases remain largely unknown and require further investigation. This review aimed to elaborate on the interactions among diet, gut microbiota, and epigenetics to uncover the mechanisms and therapeutics of metabolic diseases.
引用
收藏
页数:15
相关论文
共 229 条
  • [1] An insight into gut microbiota and its functionalities
    Adak, Atanu
    Khan, Mojibur R.
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2019, 76 (03) : 473 - 493
  • [2] Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
    Afshin, Ashkan
    Sur, Patrick John
    Fay, Kairsten A.
    Cornaby, Leslie
    Ferrara, Giannina
    Salama, Joseph S.
    Mullany, Erin C.
    Abate, Kalkidan Hassen
    Abbafati, Cristiana
    Abebe, Zegeye
    Afarideh, Mohsen
    Aggarwal, Anju
    Agrawal, Sutapa
    Akinyemiju, Tomi
    Alahdab, Fares
    Bacha, Umar
    Bachman, Victoria F.
    Badali, Hamid
    Badawi, Alaa
    Bensenor, Isabela M.
    Bernabe, Eduardo
    Biryukov, Stan H.
    Biadgilign, Sibhatu Kassa K.
    Cahill, Leah E.
    Carrero, Juan J.
    Cercy, Kelly M.
    Dandona, Lalit
    Dandona, Rakhi
    Anh Kim Dang
    Degefa, Meaza Girma
    Zaki, Maysaa El Sayed
    Esteghamati, Alireza
    Esteghamati, Sadaf
    Fanzo, Jessica
    Farinha, Carla Sofia E. Sa
    Farvid, Maryam S.
    Farzadfar, Farshad
    Feigin, Valery L.
    Fernandes, Joao C.
    Flor, Luisa Sorio
    Foigt, Nataliya A.
    Forouzanfar, Mohammad H.
    Ganji, Morsaleh
    Geleijnse, Johanna M.
    Gillum, Richard F.
    Goulart, Alessandra C.
    Grosso, Giuseppe
    Guessous, Idris
    Hamidi, Samer
    Hankey, Graeme J.
    [J]. LANCET, 2019, 393 (10184) : 1958 - 1972
  • [3] Ahmed Farid E., 2009, Cancer Genomics & Proteomics, V6, P281
  • [4] Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis
    Alenghat, Theresa
    Osborne, Lisa C.
    Saenz, Steven A.
    Kobuley, Dmytro
    Ziegler, Carly G. K.
    Mullican, Shannon E.
    Choi, Inchan
    Grunberg, Stephanie
    Sinha, Rohini
    Wynosky-Dolfi, Meghan
    Snyder, Annelise
    Giacomin, Paul R.
    Joyce, Karen L.
    Hoang, Tram B.
    Bewtra, Meenakshi
    Brodsky, Igor E.
    Sonnenberg, Gregory F.
    Bushman, Frederic D.
    Won, Kyoung-Jae
    Lazar, Mitchell A.
    Artis, David
    [J]. NATURE, 2013, 504 (7478) : 153 - +
  • [5] A new genomic blueprint of the human gut microbiota
    Almeida, Alexandre
    Mitchell, Alex L.
    Boland, Miguel
    Forster, Samuel C.
    Gloor, Gregory B.
    Tarkowska, Aleksandra
    Lawley, Trevor D.
    Finn, Robert D.
    [J]. NATURE, 2019, 568 (7753) : 499 - +
  • [6] Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes
    Arora, Tulika
    Tremaroli, Valentina
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2021, 12
  • [7] Comprehensive Analysis Reveals Novel Interactions between Circulating MicroRNAs and Gut Microbiota Composition in Human Obesity
    Assmann, Tais Silveira
    Cuevas-Sierra, Amanda
    Riezu-Boj, Jose Ignacio
    Milagro, Fermin I.
    Martinez, J. Alfredo
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 17
  • [8] The gut microbiota as an environmental factor that regulates fat storage
    Bäckhed, F
    Ding, H
    Wang, T
    Hooper, LV
    Koh, GY
    Nagy, A
    Semenkovich, CF
    Gordon, JI
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) : 15718 - 15723
  • [9] HDAC11 suppresses the thermogenic program of adipose tissue via BRD2
    Bagchi, Rushita A.
    Ferguson, Bradley S.
    Stratton, Matthew S.
    Hu, Tianjing
    Cavasin, Maria A.
    Sun, Lei
    Lin, Ying-Hsi
    Liu, Dianxin
    Londono, Pilar
    Song, Kunhua
    Pino, Maria F.
    Sparks, Lauren M.
    Smith, Steven R.
    Scherer, Philipp E.
    Collins, Sheila
    Seto, Edward
    McKinsey, Timothy A.
    [J]. JCI INSIGHT, 2018, 3 (15):
  • [10] Metazoan MicroRNAs
    Bartel, David P.
    [J]. CELL, 2018, 173 (01) : 20 - 51