Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy

被引:125
作者
Dieltjens, Lise [1 ]
Appermans, Kenny [1 ]
Lissens, Maries [1 ]
Lories, Bram [1 ]
Kim, Wook [2 ,3 ,4 ]
Van der Eycken, Erik V. [5 ,6 ]
Foster, Kevin R. [2 ,3 ]
Steenackers, Hans P. [1 ,2 ,3 ]
机构
[1] Katholieke Univ Leuven, CMPG, Dept Microbial & Mol Syst, Leuven, Belgium
[2] Univ Oxford, Dept Zool, Oxford, England
[3] Univ Oxford, Dept Biochem, Oxford, England
[4] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15219 USA
[5] Katholieke Univ Leuven, LOMAC, Dept Chem, Leuven, Belgium
[6] Peoples Friendship Univ Russia RUDN Univ, 6 Miklukho Maklaya St, Moscow, Russia
基金
英国惠康基金; 欧洲研究理事会;
关键词
SALMONELLA-TYPHIMURIUM; ESCHERICHIA-COLI; AGGREGATIVE BEHAVIOR; CURLI BIOGENESIS; SOCIAL EVOLUTION; COMPETITION; AGFD; RESISTANCE; CELLULOSE; COMPONENT;
D O I
10.1038/s41467-019-13660-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteria commonly form dense biofilms encased in extracellular polymeric substances (EPS). Biofilms are often extremely tolerant to antimicrobials but their reliance on shared EPS may also be a weakness as social evolution theory predicts that inhibiting shared traits can select against resistance. Here we show that EPS of Salmonella biofilms is a cooperative trait whose benefit is shared among cells, and that EPS inhibition reduces both cell attachment and antimicrobial tolerance. We then compare an EPS inhibitor to conventional antimicrobials in an evolutionary experiment. While resistance against conventional antimicrobials rapidly evolves, we see no evolution of resistance to EPS inhibition. We further show that a resistant strain is outcompeted by a susceptible strain under EPS inhibitor treatment, explaining why resistance does not evolve. Our work suggests that targeting cooperative traits is a viable solution to the problem of antimicrobial resistance.
引用
收藏
页数:11
相关论文
共 86 条
[1]   Targeting virulence: can we make evolution-proof drugs? [J].
Allen, Richard C. ;
Popat, Roman ;
Diggle, Stephen P. ;
Brown, Sam P. .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (04) :300-308
[2]   Multicellular organization in bacteria as a target for drug therapy [J].
André, JB ;
Godelle, B .
ECOLOGY LETTERS, 2005, 8 (08) :800-810
[3]  
[Anonymous], ANN EP REP 2015
[4]   Curli biogenesis and function [J].
Barnhart, Michelle M. ;
Chapman, Matthew R. .
ANNUAL REVIEW OF MICROBIOLOGY, 2006, 60 :131-147
[5]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[6]   SALMONELLA REFERENCE COLLECTION-B (SARB) - STRAINS OF 37 SEROVARS OF SUBSPECIES-I [J].
BOYD, EF ;
WANG, FS ;
BELTRAN, P ;
PLOCK, SA ;
NELSON, K ;
SELANDER, RK .
JOURNAL OF GENERAL MICROBIOLOGY, 1993, 139 :1125-1132
[7]   Exploiting social evolution in biofilms [J].
Boyle, Kerry E. ;
Heilmann, Silja ;
van Ditmarsch, Dave ;
Xavier, Joao B. .
CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (02) :207-212
[8]   A major protein component of the Bacillus subtilis biofilm matrix [J].
Branda, SS ;
Chu, F ;
Kearns, DB ;
Losick, R ;
Kolter, R .
MOLECULAR MICROBIOLOGY, 2006, 59 (04) :1229-1238
[9]   Antibiotic interactions that select against resistance [J].
Chait, Remy ;
Craney, Allison ;
Kishony, Roy .
NATURE, 2007, 446 (7136) :668-671
[10]   Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients [J].
Ciofu, Oana ;
Tolker-Nielsen, Tim ;
Jensen, Peter Ostrup ;
Wang, Hengzhuang ;
Hoiby, Niels .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 85 :7-23