Efficient algorithms for multiscale modeling in porous media

被引:8
|
作者
Wheeler, Mary F. [1 ]
Wildey, Tim [1 ]
Xue, Guangri [1 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78712 USA
关键词
multiscale; mortar finite element; domain decomposition; single phase flow; multipoint flux approximation; MIXED FINITE-ELEMENTS; ELLIPTIC PROBLEMS;
D O I
10.1002/nla.742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [1] On some multiscale algorithms for sector modeling in multiphase flow in porous media
    Pergament A.K.
    Semiletov V.A.
    Tomin P.Y.
    Mathematical Models and Computer Simulations, 2011, 3 (3) : 365 - 374
  • [2] Multiscale modeling of chemotaxis in homogeneous porous media
    Porter, Mark L.
    Valdes-Parada, Francisco J.
    Wood, Brian D.
    WATER RESOURCES RESEARCH, 2011, 47
  • [3] Rapid multiscale modeling of flow in porous media
    Tahmasebi, Pejman
    Kamrava, Serveh
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [4] A multiscale approach in modeling of chemically reactive porous media
    Saeedmonir, S.
    Adeli, M. H.
    Khoei, A. R.
    COMPUTERS AND GEOTECHNICS, 2024, 165
  • [5] MULTISCALE MODELING OF FLOW AND HEAT TRANSFER IN POROUS MEDIA
    Liu, Zhenyu
    Wang, Huiru
    Yao, Yuanpeng
    Wu, Huiying
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 7, PTS A-D, 2013, : 1659 - 1665
  • [6] Multiscale modeling and simulation of turbulent flows in porous media
    Yan Jin
    Andrey VKuznetsov
    International Journal of Fluid Engineering, 2024, 1 (01) : 7 - 20
  • [7] Peridynamic modeling of seepage in multiscale fractured rigid porous media
    Cai, Zhuang
    Zhang, Heng
    Li, Zhiyuan
    Huang, Dan
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2024, 48 (08) : 2216 - 2236
  • [8] Efficient decoupling schemes for multiscale multicontinuum problems in fractured porous media
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
  • [9] Modeling of Multiscale Porous Media Using Multiple Markov Random Fields
    Liu, Y.
    Mohebi, A.
    Fieguth, P.
    PORO-MECHANICS IV, 2009, : 435 - 440
  • [10] Multiscale Modeling and Simulation of Fluid Flows in Highly Deformable Porous Media
    Popov, P.
    Efendiev, Y.
    Gorb, Y.
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 148 - +