Optical Characterization Studies of a Low-Cost Particle Sensor

被引:46
作者
Li, Jiayu [1 ]
Biswas, Pratim [1 ]
机构
[1] Washington Univ St Louis, Dept Energy Environm & Chem Engn, Aerosol & Air Qual Res Lab, St Louis, MO 63130 USA
关键词
Sensor calibration; Calibration linearity; Number concentration; Mass concentration; INDOOR AIR-POLLUTION; DEVELOPING-COUNTRIES; PM2.5; QUALITY; AEROSOL; MONITORS; INDIA; SIZE; MASS; HOUSEHOLDS;
D O I
10.4209/aaqr.2017.02.0085
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Compact low-cost sensors for measuring particulate matter (PM) concentrations are receiving significant attention as they can be used in larger numbers and in a distributed manner. Most low-cost particle sensors work on optical scattering measurements from the aerosol. To ensure accurate and reliable determination of PM mass concentrations, a relationship of the scattering signal to mass concentration should be established. The scattering signal depends on the aerosol size distributions and particle refractive index. A systematic calibration of a low-cost particle sensor (Sharp GP2Y1010AU0F) was carried out by both experimental and computational studies. Sodium chloride, silica, and sucrose aerosols were used as test cases with size distributions measured using a scanning mobility particle sizer (SMPS). The mass concentration was estimated using the measured size distribution and density of the particles. Calculations of the scattered light intensity were done using these measured size distributions and known refractive index of the particles. The calculated scattered light intensity showed better linearity with the sensor signal compared to the mass concentration. To obtain a more accurate mass concentration estimation, a model was developed to determine a calibration factor (K). K is not universal for all aerosols, but depends on the size distribution and refractive index. To improve accuracy in estimation of mass concentration, an expression for K as a function of geometric mean diameter, geometric standard deviation, and refractive index is proposed. This approach not only provides a more accurate estimation of PM concentration, but also provides an estimate of the aerosol number concentration.
引用
收藏
页码:1691 / 1704
页数:14
相关论文
共 50 条
[21]   Low-Cost Turbidity Sensor to Determine Eutrophication in Water Bodies [J].
Rocher, Javier ;
Jimenez, Jose M. ;
Tomas, Jesus ;
Lloret, Jaime .
SENSORS, 2023, 23 (08)
[22]   Ambient and laboratory evaluation of a low-cost particulate matter sensor [J].
Kelly, K. E. ;
Whitaker, J. ;
Petty, A. ;
Widmer, C. ;
Dybwad, A. ;
Sleeth, D. ;
Martin, R. ;
Butterfield, A. .
ENVIRONMENTAL POLLUTION, 2017, 221 :491-500
[23]   Laboratory Performance Evaluation of a Low-Cost Electrochemical Formaldehyde Sensor [J].
Pei, Zheyuan ;
Balitskiy, Maxim ;
Thalman, Ryan ;
Kelly, Kerry E. .
SENSORS, 2023, 23 (17)
[24]   Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring [J].
Crilley, Leigh R. ;
Shaw, Marvin ;
Pound, Ryan ;
Kramer, Louisa J. ;
Price, Robin ;
Young, Stuart ;
Lewis, Alastair C. ;
Pope, Francis D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (02) :709-720
[25]   Aerosol Measurement Degradation in Low-Cost Particle Sensors Using Laboratory Calibration and Field Validation [J].
Peck, Angela ;
Handy, Rodney G. ;
Sleeth, Darrah K. ;
Schaefer, Camie ;
Zhang, Yue ;
Pahler, Leon F. ;
Ramsay, Joemy ;
Collingwood, Scott C. .
TOXICS, 2023, 11 (01)
[26]   A Low-Cost Virtual Sensor for Underwater pH Monitoring in Coastal Waters [J].
Viciano-Tudela, Sandra ;
Parra, Lorena ;
Sendra, Sandra ;
Lloret, Jaime .
CHEMOSENSORS, 2023, 11 (04)
[27]   Tutorial: Guidelines for implementing low-cost sensor networks for aerosol monitoring [J].
Zimmerman, Naomi .
JOURNAL OF AEROSOL SCIENCE, 2022, 159
[28]   Development of a Portable and Low-Cost Sensor System for Air Pollution Measurement [J].
Wang, Zike ;
Ma, Linqiang ;
Yang, Ruixuan ;
Ye, Jianhuai .
AEROSOL SCIENCE AND ENGINEERING, 2025,
[29]   A Novel Low-Cost Sensor Prototype for Nocturia Monitoring in Older People [J].
Taramasco, Carla ;
Rodenas, Tomas ;
Martinez, Felipe ;
Fuentes, Paola ;
Munoz, Roberto ;
Olivares, Rodrigo ;
de Albuquerque, Victor Hugo C. ;
Demongeot, Jacques .
IEEE ACCESS, 2018, 6 :52500-52509
[30]   Measurements of Flammable Gas Concentration in Landfill Areas with a Low-Cost Sensor [J].
Daugela, Ignas ;
Suziedelyte Visockiene, Jurate ;
Kumpiene, Jurate ;
Suzdalev, Ivan .
ENERGIES, 2021, 14 (13)