OPTIMIZATION PROCESS FOR THE REMOVAL OF HEAVY METALS FROM AQUEOUS SOLUTION USING GRAPHENE OXIDE NANOSHEETS AND RESPONSE SURFACE METHODOLOGY

被引:3
|
作者
Rouniasi, N. [1 ]
Monavvari, S. M. [1 ]
Abdoli, M. A. [2 ]
Baghdadi, M. [2 ]
Karbassi, A. R. [2 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Fac Nat Resources & Environm, Dept Environm, Tehran, Iran
[2] Univ Tehran, Coll Engn, Sch Environm, Tehran, Iran
来源
APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH | 2018年 / 16卷 / 05期
关键词
adsorption; water pollution; heavy metals; Box-Behnken Design; Langmuir; Freundlich; HIGHLY SELECTIVE ADSORPTION; ACTIVATED CARBON; EFFICIENT REMOVAL; PB(II); IONS; LEAD; COMPOSITE; CR(VI); CU(II); WASTE;
D O I
10.15666/aeer/1605_67096729
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Water pollution due to heavy metals has become a critical problem worldwide. In this study, the removal of chromium(III), cadmium and lead by graphene oxide adsorbent was examined. Graphene oxide nanosheets were synthesized through Hummer's method, and their characteristics were examined using FTIR, XRD, and SEM. The effect of independent variables, pH, contact time and initial concentration of solution on the removal efficiency of Cr(III), Cd2+ and Pb2+ was evaluated according to the experimental Box-Behnken Design using response surface methodology (RSM). Applying quadratic model, the adsorption rate of Cd2+ and Pb2+ was obtained as 99% and the adsorption rate of Cr(III) was obtained as 98%. ANOVA was applied as statistical analysis of responses. According to FESEM images, the average size of graphene oxide sheets was 1 to 3 mu m. After optimization by RSM, adsorption capacities of Cr(III), Pb2+ and Cd2+ were found to be 38 mg/g, 136 mg/g and 68 mg/g, respectively. Examination of isotherms suggested that Cd2+ and Cr(III) adsorptions follow Langmuir, and Pb2+ adsorption follows Freundlich isotherm. The results showed that graphene oxide has a good effect on removing Cr(III), Cd2+ and Pb2+ ions from aqueous solutions. pH of the solution and initial concentration of the contaminant had the highest effect on adsorption of the mentioned heavy metals. The results of RSM analysis showed that the obtained data were in agreement with the predicted model.
引用
收藏
页码:6709 / 6729
页数:21
相关论文
共 50 条
  • [41] Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology
    Ahmadi, Ali
    Heidarzadeh, Shahriar
    Mokhtari, Ahmad Reza
    Darezereshki, Esmaeil
    Harouni, Houshang Asadi
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2014, 147 : 151 - 158
  • [43] Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum
    Truong, Quoc-Minh
    Nguyen, Thanh-Binh
    Chen, Wei-Hsin
    Chen, Chiu-Wen
    Patel, Anil Kumar
    Bui, Xuan-Thanh
    Singhania, Reeta Rani
    Dong, Cheng-Di
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [44] TX-100 adsorption from aqueous solution using modified graphene oxide; optimization by response surface methodology and one factor at a time techniques
    Rezazadeh, Najmeh
    Danesh, Shahnaz
    Eftekhari, Mohammad
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2023, 44 (06) : 889 - 900
  • [45] Optimization of Copper Removal by Photovoltaic Electrocoagulation from Aqueous Solution Using Response Surface Methodology Towards Sustainable Development
    Hoa Nguyen Thanh
    Lien Nguyen
    Phuong Dinh Thi Lan
    JOURNAL OF ECOLOGICAL ENGINEERING, 2019, 20 (07): : 103 - 111
  • [46] Removal of methylene blue from aqueous solution by graphene oxide
    Yang, Sheng-Tao
    Chen, Sheng
    Chang, Yanli
    Cao, Aoneng
    Liu, Yuanfang
    Wang, Haifang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 359 (01) : 24 - 29
  • [47] Effective removal of heavy metals from aqueous solution by porous activated carbon/thiol functionalized graphene oxide composite
    Mojoudi, Fatemeh
    Hamidian, Amir Hossein
    Goodarzian, Nooredin
    Eagderi, Soheil
    DESALINATION AND WATER TREATMENT, 2018, 124 : 106 - 116
  • [48] Response surface methodology for strontium removal process optimization from contaminated water using zeolite nanocomposites
    Karmaker, Shamal Chandra
    Eljamal, Osama
    Saha, Bidyut Baran
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (40) : 56535 - 56551
  • [49] Application of Response Surface Methodology for Optimization of Cadmium Ion Removal from an Aqueous Solution by Eggshell Powder
    Sabah, Hajji
    Thouraya, Turki
    Melek, Hajji
    Nadia, Mzoughi
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2018, 34 (02) : 302 - 310
  • [50] Modeling uranium (II) removal from aqueous solution by micellar enhanced ultrafiltration using response surface methodology
    Shojaei, Hesam
    Keshtkar, Alireza
    Moosavian, Mohammadali
    Torkabad, Morteza Ghasemi
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2021, 15