Efficient solar water oxidation by WO3 plate arrays film decorated with CoOx electrocatalyst

被引:27
作者
Zhan, Faqi [1 ,2 ]
Liu, Wenhua [1 ,2 ]
Li, Wenzhang [1 ,2 ]
Li, Jie [1 ,2 ]
Yang, Yahui [3 ]
Li, Yaomin [4 ]
Chen, Qiyuan [1 ,2 ]
机构
[1] Cent S Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Key Lab Hunan Prov Met & Mat Proc Rare Met, Changsha 410083, Hunan, Peoples R China
[3] Hunan Agr Univ, Coll Resources & Environm, Changsha 410128, Hunan, Peoples R China
[4] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
基金
国家高技术研究发展计划(863计划);
关键词
Solar water oxidation; WO3 plate arrays; CoOx electrocatalyst; OXYGEN-EVOLVING CATALYST; IN-SITU FORMATION; THIN-FILMS; PHOTOELECTROCHEMICAL PROPERTIES; PHOTOANODE; NANOWIRES; NANOPARTICLE; PERFORMANCE; PHOSPHATE; NANORODS;
D O I
10.1016/j.ijhydene.2016.06.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the synthesis and photoelectrochemical characterization of CoOx oxygen evolution catalyst modified two-dimensional (2D) WO3 plate arrays photoelectrode. The 2D-WO3 plate arrays were prepared perpendicularly on the FTO substrate by hydrothermal method. The CoOx nanoparticles were deposited on the surface of WO3 plate arrays on FTO by chemical deposition process. The CoOx nanoparticles are distributed on the surface of WO3 plates with a diameter of about 20 nm. The CoOx/WO3 film shows enhanced photo electrochemical performance than the bare WO3 film. The highest incident-photon-to current-efficiency (IPCE) value increases from 24.9% to 49.1% when introducing CoOx. The deposited CoOx electrocatalyst on WO3 surface can transfer holes effectively through the cobalt ion valency cycle, suppress the hole's accumulation and recombination at the electrode surface, achieve the superior kinetics and consequently enhance the overall solar water oxidation efficiency. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11925 / 11932
页数:8
相关论文
共 46 条
[1]  
Amano F, CHEM COMMUN
[2]  
[Anonymous], 2010, ANGEW CHEM, DOI DOI 10.1002/ANGE.201003110
[3]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[4]   Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process [J].
Barakat, Nasser A. M. ;
Khil, Myung Seob ;
Sheikh, Faheem A. ;
Kim, Hak Yong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (32) :12225-12233
[5]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[6]   Co3O4 Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids [J].
Blakemore, James D. ;
Gray, Harry B. ;
Winkler, Jay R. ;
Mueller, Astrid M. .
ACS CATALYSIS, 2013, 3 (11) :2497-2500
[7]   Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation [J].
Chatchai, Ponchio ;
Kishioka, Shin-ya ;
Murakami, Yoshinori ;
Nosaka, Atsuko Y. ;
Nosaka, Yoshio .
ELECTROCHIMICA ACTA, 2010, 55 (03) :592-596
[8]   Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries [J].
Du, Guojun ;
Liu, Xiaogang ;
Zong, Yun ;
Hor, T. S. Andy ;
Yu, Aishui ;
Liu, Zhaolin .
NANOSCALE, 2013, 5 (11) :4657-4661
[9]   Hydroxides of transition metals as artificial catalysts for oxidation of water to dioxygen [J].
Elizarova, GL ;
Zhidomirov, GM ;
Parmon, VN .
CATALYSIS TODAY, 2000, 58 (2-3) :71-88
[10]  
Granqvist CG, SOL ENERGY MAT SOL C