Ce(NO3)4: A dual-functional electrolyte additive for room-temperature sodium-sulfur batteries

被引:12
作者
Su, Liwei [1 ]
Xu, Qinghong [1 ]
Song, Yuang [1 ]
Wu, Hao [1 ]
Chen, Huan [1 ]
Shen, Chaoqi [1 ]
Wang, Lianbang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Tech, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
Room-temperature sodium-sulfur batteries; Sodium; Electrolytes; Additives; Cerium nitrate; HIGH-PERFORMANCE; S BATTERIES; LI-S; LITHIUM; CARBON; ANODE; NA; INTERPHASE; CHALLENGES; MECHANISM;
D O I
10.1016/j.cej.2022.137978
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Room-temperature sodium-sulfur batteries face enormous challenges in the coulombic efficiency, capacity retention, and rate performance, which are seriously related to the solid electrolyte interface film, the shuttle effect of polysulfide, and the sodium-sulfur reaction kinetics. Adjusting the electrolyte composition by additives can significantly improve the battery performance and is attracting tremendous attention. However, the reported additives mainly focus on one of the two electrodes. It is still a considerable challenge to balance both aspects. This work proposes a novel dual-functional additive, Ce(NO3)(4) , and studies its comprehensive influence on the battery performance by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical techniques. The results show that Ce(NO3)(4) generates NaCeO2 and NaNO3 to deposit on the Na surface. This inert deposition layer inhibits the side reactions between Na and polysulfides and optimizes the Na dissolution/deposition process, thereby improving the cycle stability of the battery. In addition, Ce4+ has a strong adsorption effect on capturing and evenly depositing polysulfides on the S cathode to inhibit the shuttle effect. In short, the Ce(NO3)(4) additive plays a dual function of protecting the Na anode and optimizing the S cathode reaction.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Interphase-Regulated Room-Temperature Sodium-Sulfur Batteries Enabled by a Nonflammable Dual-Functional Electrolyte
    Liu, Yang
    Lu, Suwan
    Weng, Shixiao
    Xu, Jingjing
    Tu, Haifeng
    Wang, Zhicheng
    Xue, Jiangyan
    Liu, Lingwang
    Zhang, Fengrui
    Sun, Guochao
    Gao, Yiwen
    Qian, Can
    Liu, Zheng
    Li, Hong
    Wu, Xiaodong
    ADVANCED ENERGY MATERIALS, 2024,
  • [2] The promises, challenges and pathways to room-temperature sodium-sulfur batteries
    Wang, Lei
    Wang, Tao
    Peng, Lele
    Wang, Yiliu
    Zhang, Meng
    Zhou, Jian
    Chen, Maoxin
    Cao, Jinhui
    Fei, Huilong
    Duan, Xidong
    Zhu, Jian
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (03)
  • [3] Review and prospects for room-temperature sodium-sulfur batteries
    Chen, Peng
    Wang, Chengyin
    Wang, Tianyi
    MATERIALS RESEARCH LETTERS, 2022, 10 (11): : 691 - 719
  • [4] Trends in the Development of Room-Temperature Sodium-Sulfur Batteries
    Novikova, S. A.
    Voropaeva, D. Yu.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2022, 58 (04) : 333 - 348
  • [5] Remedies for Polysulfide Dissolution in Room-Temperature Sodium-Sulfur Batteries
    Wang, Yun-Xiao
    Lai, Wei-Hong
    Chou, Shu-Lei
    Liu, Hua-Kun
    Dou, Shi-Xue
    ADVANCED MATERIALS, 2020, 32 (18)
  • [6] Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive
    Liu, Dezhong
    Li, Zhi
    Li, Xiang
    Chen, Xin
    Li, Zhen
    Yuan, Lixia
    Huang, Yunhui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6658 - 6666
  • [7] Quasi-solid-state conversion cathode materials for room-temperature sodium-sulfur batteries
    Lim, Carina Yi Jing
    Seh, Zhi Wei
    BATTERY ENERGY, 2022, 1 (03):
  • [8] Recent Advances in Cathode Materials for Room-Temperature Sodium-Sulfur Batteries
    Liu, Dezhong
    Li, Zhen
    Li, Xiang
    Cheng, Zexiao
    Yuan, Lixia
    Huang, Yunhui
    CHEMPHYSCHEM, 2019, 20 (23) : 3164 - 3176
  • [9] Structural regulation of electrocatalysts for room-temperature sodium-sulfur batteries
    Wu, Liang
    Dou, Xi-Long
    Wang, Xiao-Yun
    Liu, Zi-Jiang
    Li, Wei-Han
    Wu, Ying
    RARE METALS, 2024, : 2294 - 2313
  • [10] Stable Cycling of Room-Temperature Sodium-Sulfur Batteries Based on an In Situ Crosslinked Gel Polymer Electrolyte
    Murugan, Saravanakumar
    Klostermann, Sina V.
    Schuetzenduebe, Peter
    Richter, Gunther
    Kaestner, Johannes
    Buchmeiser, Michael R.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (32)