On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators

被引:0
作者
Bisht, Ravindra K. [1 ]
Rakocevic, Vladimir [2 ]
机构
[1] Natl Def Acad, Dept Math, Pune 411023, Maharashtra, India
[2] Univ Nis, Fac Sci & Math, Visegradska 33, Nish 18000, Serbia
来源
APPLIED GENERAL TOPOLOGY | 2021年 / 22卷 / 02期
关键词
Menger PM-spaces; fixed point; almost orbital continuity; non-expansive mapping; CONTRACTIONS; COMPLETENESS;
D O I
10.4995/agt.2021.15561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Meir-Keeler type fixed point theorem for a family of mappings is proved in Menger probabilistic metric space (Menger PM-space). We establish that completeness of the space is equivalent to fixed point property for a larger class of mappings that includes continuous as well as discontinuous mappings. In addition to it, a probabilistic fixed point theorem satisfying (epsilon - delta) type non-expansive mappings is established.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 26 条
  • [1] Discontinuity at fixed point and metric completeness
    Bisht, Ravindra K.
    Rakocevic, Vladimir
    [J]. APPLIED GENERAL TOPOLOGY, 2020, 21 (02): : 349 - 362
  • [2] Bisht RK, 2020, CARPATHIAN J MATH, V36, P215
  • [3] GENERALIZED MEIR-KEELER TYPE CONTRACTIONS AND DISCONTINUITY AT FIXED POINT
    Bisht, Ravindra K.
    Rakocevic, Vladimir
    [J]. FIXED POINT THEORY, 2018, 19 (01): : 57 - 64
  • [4] A remark on discontinuity at fixed point
    Bisht, Ravindra K.
    Pant, R. P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1239 - 1242
  • [5] Ciric L.B., 1971, Math. Balk, V1, P52
  • [6] Hicks T., 1992, Int. J. Math. Sci, V15, P15, DOI [10.1155/S0161171292000024, DOI 10.1155/S0161171292000024]
  • [7] JAGGI DS, 1977, INDIAN J MATH, V19, P113
  • [8] Jungck G.F., 2011, TOPOL P, V37, P1
  • [9] A THEOREM ON CONTRACTION MAPPINGS
    MEIR, A
    KEELER, E
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 28 (02) : 326 - &
  • [10] Statistical metrics
    Menger, K
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1942, 28 : 535 - 537