Modeling Nanoscale III-V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach

被引:0
作者
Caruso, Enrico [1 ,2 ]
Esseni, David [1 ]
Gnani, Elena [3 ]
Lizzit, Daniel [1 ]
Palestri, Pierpaolo [1 ]
Pin, Alessandro [1 ]
Puglisi, Francesco Maria [4 ]
Selmi, Luca [4 ]
Zagni, Nicolo [4 ]
机构
[1] Univ Udine, Polytechn Dept Engn & Architecture, I-33100 Udine, Italy
[2] Infineon Technol Austria AG, Siemensstrasse 2, A-9500 Villach, Austria
[3] Univ Bologna, ARCES Res Ctr, Dept Elect Engn DEI, I-40136 Bologna, Italy
[4] Univ Modena & Reggio Emilia, Dept Engn Enzo, Via P. Vivarelli 10, I-41125 Modena, Italy
关键词
III-V semiconductors; modeling and simulation; Monte Carlo; TRANSPORT; FETS; SEMICONDUCTORS; QUANTIZATION; SIMULATION; SILICON; PLANAR; LENGTH; TRAPS; INAS;
D O I
10.3390/electronics10202472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe the multi-valley/multi-subband Monte Carlo (MV-MSMC) approach to model nanoscale MOSFETs featuring III-V semiconductors as channel material. This approach describes carrier quantization normal to the channel direction, solving the Schrodinger equation while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport equation. In this paper, we outline a methodology to include quantum effects along the transport direction (namely, source-to-drain tunneling) and provide model verification by comparison with Non-Equilibrium Green's Function results for nanoscale MOSFETs with InAs and InGaAs channels. It is then shown how to use the MV-MSMC to calibrate a Technology Computer Aided Design (TCAD) simulation deck based on the drift-diffusion model that allows much faster simulations and opens the doors to variability studies in III-V channel MOSFETs.</p>
引用
收藏
页数:15
相关论文
共 51 条
  • [1] Aguirre P, 2016, INT CONF SIM SEMI PR, P53, DOI 10.1109/SISPAD.2016.7605146
  • [2] [Anonymous], 2019, Sentaurus Device User Guide, Synopsys
  • [3] Badami O, 2016, INT EL DEVICES MEET
  • [4] Benchmarking of 3-D MOSFET Architectures: Focus on the Impact of Surface Roughness and Self-Heating
    Badami, O.
    Lizzit, D.
    Driussi, F.
    Palestri, P.
    Esseni, D.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (09) : 3646 - 3653
  • [5] An Improved Surface Roughness Scattering Model for Bulk, Thin-Body, and Quantum-Well MOSFETs
    Badami, Oves
    Caruso, Enrico
    Lizzit, Daniel
    Osgnach, Patrik
    Esseni, David
    Palestri, Pierpaolo
    Selmi, Luca
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (06) : 2306 - 2312
  • [6] 8-BANK K.P MODEL OF STRAINED ZINCBLENDE CRYSTALS
    BAHDER, TB
    [J]. PHYSICAL REVIEW B, 1990, 41 (17): : 11992 - 12001
  • [7] TCAD Mobility Model of III-V Short-Channel Double-Gate FETs Including Ballistic Corrections
    Carapezzi, Stefania
    Caruso, Enrico
    Gnudi, Antonio
    Palestri, Pierpaolo
    Reggiani, Susanna
    Gnani, Elena
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (12) : 4882 - 4888
  • [8] Caruso E, 2017, INT CONF ULTI INTEGR, P152, DOI 10.1109/ULIS.2017.7962587
  • [9] The Role of Oxide Traps Aligned With the Semiconductor Energy Gap in MOS Systems
    Caruso, Enrico
    Lin, Jun
    Monaghan, Scott
    Cherkaoui, Karim
    Gity, Farzan
    Palestri, Pierpaolo
    Esseni, David
    Selmi, Luca
    Hurley, Paul K.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (10) : 4372 - 4378
  • [10] Quasi-Ballistic Γ- and L-Valleys Transport in Ultrathin Body Strained (111) GaAs nMOSFETs
    Caruso, Enrico
    Palestri, Pierpaolo
    Lizzit, Daniel
    Osgnach, Patrik
    Esseni, David
    Selmi, Luca
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (12) : 4685 - 4692