The Newton Method for C1,α-maps in banach spaces

被引:0
作者
Riedrich, T [1 ]
机构
[1] Tech Univ Dresden, Fachrichtung Math, Inst Anal, D-01062 Dresden, Germany
关键词
Newton Method; nonlinear eigenvalue problems; nonlinear Dirichlet problems;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
On the basis of a work by B. Doring for R-1 --> R-1-maps we give a thourough proof of the convergence and on the convergence speed of the Newton Method for C-1,C-alpha-maps in Banach spaces. We describe the application of this classical method for the existence land local uniqueness and approximation) of nonlinear eigenvalue problems - abstractly - and for the concrete case of nonlinear Dirichlet problem which was formerly attacked by variational methods.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 6 条
[1]   THE NEWTON-KANTOROVICH METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS AND THE PTAK ERROR-ESTIMATES [J].
ARGYROS, IK .
MONATSHEFTE FUR MATHEMATIK, 1990, 109 (03) :175-193
[2]   VARIATIONAL-PROBLEMS WITH CRITICAL SOBOLEV GROWTH AND POSITIVE DIRICHLET DATA [J].
CAFFARELLI, LA ;
SPRUCK, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (01) :1-18
[3]  
DORING B, 1969, MATH PHYSIKALISCHE S, V16, pS27
[4]  
GOPFERT A, 1994, FUNKTIONALANALYSIS, V4
[5]  
KANTOROWITSCH LV, 1964, FUNKTIONALANALYSIS N
[6]   AN AXIOM OF CONVERGENCE IN ITERATIVE METHODS [J].
SCHMIDT, JW .
MATHEMATISCHE NACHRICHTEN, 1968, 37 (1-2) :67-&