LONG WAVELENGTH LIMIT OF NON-ISENTROPIC EULER-POISSON SYSTEM

被引:0
作者
Zhao, Lixian [1 ]
Yang, Xiongfeng [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年
基金
中国国家自然科学基金;
关键词
  Non-isentropic Euler-Poisson equation; Long wavelength limit; KdV equation; Gardner-Morikawa transformation; KORTEWEG-DE-VRIES; QUASI-NEUTRAL LIMIT; VLASOV-POISSON; CAUCHY-PROBLEM; EQUATION; WAVE; DERIVATION; APPROXIMATION;
D O I
10.3934/dcdsb.2022230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the long wavelength limit of EulerPoisson system with variable temperature for ions in plasma. By the GardnerMorikawa transformation, we formally derive the Korteweg-de Vries (KdV) equation and the linear KdV equation from the non-isentropic Euler-Poisson system. Then, we establish the rigorous justification of the KdV equation from Euler-Poisson equation in a time interval [0, tau*epsilon- 32 ] for some tau* > 0. The long wavelength limit of Euler-Poisson equation follows from the suitable uniform bound of the remainder terms by the nonlinear energy estimates.
引用
收藏
页码:3547 / 3571
页数:25
相关论文
共 31 条
  • [1] Linear Stability of Solitary Waves for the Isothermal Euler-Poisson System
    Bae, Junsik
    Kwon, Bongsuk
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (01) : 257 - 327
  • [2] Small amplitude limit of solitary waves for the Euler-Poisson system
    Bae, Junsik
    Kwon, Bongsuk
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (06) : 3450 - 3478
  • [3] Long wave asymptotics for the Euler-Korteweg system
    Benzoni-Gavage, Sylvie
    Chiron, David
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 245 - 304
  • [4] On the Korteweg-de Vries Long-Wave Approximation of the Gross-Pitaevskii Equation II
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    Smets, Didier
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (01) : 113 - 164
  • [5] Quasineutral limit of an Euler-Poisson system arising from plasma physics
    Cordier, S
    Grenier, E
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) : 1099 - 1113
  • [6] A HALF-SPACE PROBLEM ON THE FULL EULER-POISSON SYSTEM
    Duan, Renjun
    Yin, Haiyan
    Zhu, Changjiang
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) : 6094 - 6121
  • [7] Ion-acoustic shock in a collisional plasma
    Duan, Renjun
    Liu, Shuangqian
    Zhang, Zhu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3721 - 3768
  • [8] STABILITY OF THE RAREFACTION WAVE OF THE VLASOV-POISSON-BOLTZMANN SYSTEM
    Duan, Renjun
    Liu, Shuangqian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) : 3585 - 3647
  • [9] The Vlasov-Poisson system with strong magnetic field in quasineutral regime
    Golse, F
    Saint-Raymond, L
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (05) : 661 - 714
  • [10] Global solutions of the Euler-Maxwell two-fluid system in 3D
    Guo, Yan
    Ionescu, Alexandru D.
    Pausader, Benoit
    [J]. ANNALS OF MATHEMATICS, 2016, 183 (02) : 377 - 498