Relationship between Gene Body DNA Methylation and Intragenic H3K9me3 and H3K36me3 Chromatin Marks

被引:107
作者
Hahn, Maria A. [1 ]
Wu, Xiwei [2 ]
Li, Arthur X. [3 ]
Hahn, Torsten [1 ]
Pfeifer, Gerd P. [1 ]
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Dept Canc Biol, Duarte, CA USA
[2] City Hope Natl Med Ctr, Dept Mol Med, Beckman Res Inst, Duarte, CA USA
[3] City Hope Natl Med Ctr, Dept Informat Sci, Beckman Res Inst, Duarte, CA USA
关键词
HISTONE H3 LYSINE-9; HUMAN CANCER-CELLS; RNA-POLYMERASE-II; ARABIDOPSIS-THALIANA; STEM-CELLS; GENOME; METHYLTRANSFERASE; TRANSCRIPTION; DISTINCT; DNMT1;
D O I
10.1371/journal.pone.0018844
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or (ii) genes with high CpG density and DNA methylation in the gene body. We observed that a combination of low CpG density in gene bodies together with H3K9me3 and H3K36me3 occupancy is a specific epigenetic feature of zinc finger (ZNF) genes, which comprise 90% of all genes carrying both histone marks on chromosome 19. For genes with high intragenic CpG density, transcription and H3K36me3 occupancy were not changed in conditions of partial or intensive loss of DNA methylation in gene bodies. siRNA knockdown of SETD2, the major histone methyltransferase responsible for production of H3K36me3, did not reduce DNA methylation in gene bodies. Our study suggests that the H3K36me3 and DNA methylation marks in gene bodies are established largely independently of each other and points to similar functional roles of intragenic DNA methylation and intragenic H3K9me3 for CpG-rich and CpG-poor genes, respectively.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells [J].
Ball, Madeleine P. ;
Li, Jin Billy ;
Gao, Yuan ;
Lee, Je-Hyuk ;
LeProust, Emily M. ;
Park, In-Hyun ;
Xie, Bin ;
Daley, George Q. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2009, 27 (04) :361-368
[2]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[3]   A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases [J].
Benetti, Roberta ;
Gonzalo, Susana ;
Jaco, Isabel ;
Munoz, Purificacion ;
Gonzalez, Susana ;
Schoeftner, Stefan ;
Murchison, Elizabeth ;
Andl, Thomas ;
Chen, Taiping ;
Klatt, Peter ;
Li, En ;
Serrano, Manuel ;
Millar, Sarah ;
Hannon, Gregory ;
Blasco, Maria A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (03) :268-279
[4]   GENE NUMBER, NOISE-REDUCTION AND BIOLOGICAL COMPLEXITY [J].
BIRD, AP .
TRENDS IN GENETICS, 1995, 11 (03) :94-100
[5]   Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry [J].
Bonenfant, Debora ;
Towbin, Harry ;
Coulot, Michele ;
Schindler, Patrick ;
Mueller, Dieter R. ;
van Oostrum, Jan .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (11) :1917-1932
[6]   Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription [J].
Carrozza, MJ ;
Li, B ;
Florens, L ;
Suganuma, T ;
Swanson, SK ;
Lee, KK ;
Shia, WJ ;
Anderson, S ;
Yates, J ;
Washburn, MP ;
Workman, JL .
CELL, 2005, 123 (04) :581-592
[7]   DNA hypomethylation leads to elevated mutation rates [J].
Chen, RZ ;
Pettersson, U ;
Beard, C ;
Jackson-Grusby, L ;
Jaenisch, R .
NATURE, 1998, 395 (6697) :89-93
[8]   Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells [J].
Chen, Taiping ;
Hevi, Sarah ;
Gay, Frederique ;
Tsujimoto, Naomi ;
He, Timothy ;
Zhang, Bailin ;
Ueda, Yoshihide ;
Li, En .
NATURE GENETICS, 2007, 39 (03) :391-396
[9]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[10]  
DHAYALAN A, 2010, J BIOL CHEM