Use of a Reference Tissue and Blood Vessel to Measure the Arterial Input Function in DCEMRI

被引:19
作者
Fan, Xiaobing [1 ]
Haney, Chad R. [1 ]
Mustafi, Devkumar [1 ]
Yang, Cheng [1 ]
Zamora, Marta [1 ]
Markiewicz, Erica J. [1 ]
Karczmar, Gregory S. [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
dynamic contrast enhanced MRI; arterial input function; pharmacokinetic model; volume transfer constant of contrast agent; CONTRAST-ENHANCED MRI; REFERENCE REGION MODEL; TUMOR-BEARING RATS; CR BOLUS-TRACKING; FUNDAMENTAL-CONCEPTS; SHUTTER-SPEED; PERFUSION; VARIABILITY; ACQUISITION; PARAMETERS;
D O I
10.1002/mrm.22551
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Accurate measurement of the arterial input function is critical for quantitative evaluation of dynamic contrast enhanced magnetic resonance imaging data. Use of the reference tissue method to derive a local arterial input function avoided large errors associated with direct arterial measurements, but relied on literature values for K-trans and v(e). We demonstrate that accurate values of K-trans and v(e) in a reference tissue can be measured by comparing contrast media concentration in a reference tissue to plasma concentrations measured directly in a local artery after the 1-2 passes of the contrast media bolus when plasma concentration is low and can be measured accurately. The values of K-trans and v(e) calculated for the reference tissue can then be used to derive a more complete arterial input function including the first pass of the contrast bolus. This new approach was demonstrated using dynamic contrast enhanced magnetic resonance imaging data from rodent hind limb. Values obtained for K-trans and ve in muscle, and the shape and amplitude of the derived arterial input function are consistent with published results. Magn Reson Med 64:1821-1826, 2010. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1821 / 1826
页数:6
相关论文
共 25 条
[1]   Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast [J].
Armitage, P ;
Behrenbruch, C ;
Brady, M ;
Moore, N .
MEDICAL IMAGE ANALYSIS, 2005, 9 (04) :315-329
[2]  
Bonekamp David, 2008, Top Magn Reson Imaging, V19, P273, DOI 10.1097/RMR.0b013e3181aacdc2
[3]   T1 measurement of flowing blood and arterial input function determination for quantitative 3D T1-weighted DCE-MRI [J].
Cheng, Hai-Ling Margaret .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (05) :1073-1078
[4]  
Evelhoch JL, 1999, JMRI-J MAGN RESON IM, V10, P254, DOI 10.1002/(SICI)1522-2586(199909)10:3<254::AID-JMRI5>3.0.CO
[5]  
2-9
[6]   New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors [J].
Fan, XB ;
Medved, M ;
River, JN ;
Zamora, M ;
Corot, C ;
Robert, P ;
Bourrinet, P ;
Lipton, M ;
Culp, RM ;
Karczmar, GS .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (03) :487-494
[7]   A New Approach to Analysis of the Impulse Response Function (IRF) in Dynamic Contrast-Enhanced MRI (DCEMRI): A Simulation Study [J].
Fan, Xiaobing ;
Karczmar, Gregory S. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (01) :229-239
[8]   Partial Volume Effect (PVE) on the Arterial Input Function (AIF) in T1-Weighted Perfusion Imaging and Limitations of the Multiplicative Rescaling Approach [J].
Hansen, Adam E. ;
Pedersen, Henrik ;
Rostrup, Egill ;
Larsson, Henrik B. W. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (04) :1055-1059
[9]   Inflow effect correction in fast gradient-echo perfusion imaging [J].
Ivancevic, MK ;
Zimine, I ;
Montet, X ;
Hyacinthe, JN ;
Lazeyras, F ;
Foxall, D ;
Vallée, JP .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :885-891
[10]   FLOW FIELD-MAPPING IN THE ANESTHETIZED RAT [J].
JOOS, KM ;
BLAIR, WF ;
BROWN, TD ;
GABLE, RH .
MICROSURGERY, 1990, 11 (01) :12-18