EFFICIENT HIGH-ORDER DISCONTINUOUS GALERKIN COMPUTATIONS OF LOW MACH NUMBER FLOWS

被引:10
|
作者
Zeifang, Jonas [1 ]
Kaiser, Klaus [2 ,3 ]
Beck, Andrea [1 ]
Schuetz, Jochen [3 ]
Munz, Claus-Dieter [1 ]
机构
[1] Univ Stuttgart, Inst Aerodynam & Gasdynam, Stuttgart, Germany
[2] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, Aachen, Germany
[3] Univ Hasselt, Fac Wetenschappen, Diepenbeek, Belgium
关键词
discontinuous Galerkin; IMEX-Runge-Kutta; low Mach number; splitting; asymptotic preserving; RUNGE-KUTTA METHODS; ISENTROPIC EULER; CANCELLATION PROBLEM; EQUATIONS; SCHEMES; LIMIT; SYSTEMS; WAVES; FLUX;
D O I
10.2140/camcos.2018.13.243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the efficient approximation of low Mach number flows by a high-order scheme, coupling a discontinuous Galerkin (DG) discretization in space with an implicit/explicit (IMEX) discretization in time. The splitting into linear implicit and nonlinear explicit parts relies heavily on the incompressible solution. The method has been originally developed for a singularly perturbed ODE and applied to the isentropic Euler equations. Here, we improve, extend, and investigate the so-called RS-IMEX splitting method. The resulting scheme can cope with a broader range of Mach numbers without running into roundoff errors, it is extended to realistic physical boundary conditions, and it is shown to be highly efficient in comparison to more standard solution techniques.
引用
收藏
页码:243 / 270
页数:28
相关论文
共 50 条
  • [11] Discontinuous Galerkin solution of preconditioned Euler equations for very low Mach number flows
    Nigro, A.
    De Bartolo, C.
    Hartmann, R.
    Bassi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (04) : 449 - 467
  • [12] BEHAVIOR OF THE DISCONTINUOUS GALERKIN METHOD FOR COMPRESSIBLE FLOWS AT LOW MACH NUMBER ON TRIANGLES AND TETRAHEDRONS
    Jung, Jonathan
    Perrier, Vincent
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (01): : A452 - A482
  • [13] A high-order discontinuous Galerkin method for all-speed flows
    Renda, S. M.
    Hartmann, R.
    De Bartolo, C.
    Wallraff, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (04) : 224 - 247
  • [14] Assessment of a high-order accurate Discontinuous Galerkin method for turbomachinery flows
    Bassi, F.
    Botti, L.
    Colombo, A.
    Crivellini, A.
    Franchina, N.
    Ghidoni, A.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (04) : 307 - 328
  • [15] A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows
    Landmann, Bjoern
    Kessler, Manuel
    Wagner, Siegfried
    Kraemer, Ewald
    COMPUTERS & FLUIDS, 2008, 37 (04) : 427 - 438
  • [16] A high-order Discontinuous Galerkin solver for unsteady incompressible turbulent flows
    Noventa, G.
    Massa, F.
    Bassi, F.
    Colombo, A.
    Franchina, N.
    Ghidoni, A.
    COMPUTERS & FLUIDS, 2016, 139 : 248 - 260
  • [17] A high-order Discontinuous Galerkin Chimera method for laminar and turbulent flows
    Wurst, Michael
    Kessler, Manuel
    Kraemer, Ewald
    COMPUTERS & FLUIDS, 2015, 121 : 102 - 113
  • [18] Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows
    Chapelier, J. -B.
    Plata, M. de la Llave
    Renac, F.
    Lamballais, E.
    COMPUTERS & FLUIDS, 2014, 95 : 210 - 226
  • [19] A high-order discontinuous Galerkin method for compressible flows with immersed boundaries
    Mueller, B.
    Kraemer-Eis, S.
    Kummer, F.
    Oberlack, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (01) : 3 - 30
  • [20] A high-order low-Mach number AMR construction for chemically reacting flows
    Safta, Cosmin
    Ray, Jaideep
    Najm, Habib N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (24) : 9299 - 9322