A comparative study of a back propagation artificial neural network and a Zerilli-Armstrong model for pure molybdenum during hot deformation
被引:26
作者:
Chen, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
Chen, Cheng
[1
]
Yin, Haiqing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
Yin, Haiqing
[1
]
Humail, Islam S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
Humail, Islam S.
[1
]
Wang, Yuhui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
Wang, Yuhui
[1
]
Qu, Xuanhui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
Qu, Xuanhui
[1
]
机构:
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
molybdenum;
hot deformation;
flow stress;
neural network;
Zerilli-armstrong model;
D O I:
10.1016/j.ijrmhm.2006.11.004
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
in this study, the hot deformation behavior of molybdenum was investigated by means of thermal simulation on a Gleeble-1500 machine. The experiments were carried out under different temperatures, ranging from 1100 to 1400 degrees C, and with a strain rate of IS-1 to 50S(-1). The flow stress under the above mentioned hot deformation conditions was predicted using a back propagation (BP) artificial neural network. The architecture of the network included three input parameters: strain rate, temperature and true strain, and just one output parameter: the flow stress. One hidden layer was adopted, which include nine neurons. Compared with the prediction method of flow stress using the Zerilli-Armstrong model, the prediction method using the BP artificial neural network had higher accuracy. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 11 条
[11]
Zwonitzer SA, 1998, MOLYBDENUM AND MOLYBDENUM ALLOYS, P111