GRAPHNET: GRAPH CLUSTERING WITH DEEP NEURAL NETWORKS

被引:5
作者
Zhang, Xianchao [1 ,2 ]
Mu, Jie [1 ,2 ]
Liu, Han [1 ,2 ]
Zhang, Xiaotong [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Software, Dalian, Peoples R China
[2] Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
基金
美国国家科学基金会;
关键词
Graph clustering; graph neural networks; self-supervised learning;
D O I
10.1109/ICASSP39728.2021.9413809
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Existing deep graph clustering methods usually rely on neural language models to learn graph embeddings. However, these methods either ignore node feature information or fail to learn cluster-oriented graph embeddings. In this paper, we propose a novel deep graph clustering framework to tackle these two issues. First, we construct a feature transformation module to effectively integrate node feature information with graph topologies. Second, we introduce a graph embedding module and a self-supervised learning strategy to constrain graph embeddings by leveraging the graph similarity and the self-learning loss to group similar graphs together, thus encouraging the obtained graph embeddings to be cluster-oriented. Extensive experimental results on eight real-world graph datasets validate the superiority of the proposed method over existing ones.
引用
收藏
页码:3800 / 3804
页数:5
相关论文
共 21 条
  • [1] Bianchi FM, 2020, PR MACH LEARN RES, V119
  • [2] Shortest-path kernels on graphs
    Borgwardt, KM
    Kriegel, HP
    [J]. Fifth IEEE International Conference on Data Mining, Proceedings, 2005, : 74 - 81
  • [3] Deep Clustering for Unsupervised Learning of Visual Features
    Caron, Mathilde
    Bojanowski, Piotr
    Joulin, Armand
    Douze, Matthijs
    [J]. COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 139 - 156
  • [4] On graph kernels:: Hardness results and efficient alternatives
    Gärtner, T
    Flach, P
    Wrobel, S
    [J]. LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 129 - 143
  • [5] node2vec: Scalable Feature Learning for Networks
    Grover, Aditya
    Leskovec, Jure
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 855 - 864
  • [6] Gutmann Michael, J MACHINE LEARNING R
  • [7] Generalized Shortest Path Kernel on Graphs
    Hermansson, Linus
    Johansson, Fredrik D.
    Watanabe, Osamu
    [J]. DISCOVERY SCIENCE, DS 2015, 2015, 9356 : 78 - 85
  • [8] Ivanov S., 2018, PMLR, V80, P2191
  • [9] Kondor R, 2016, ADV NEUR IN, V29
  • [10] Explicit versus Implicit Graph Feature Maps: A Computational Phase Transition for Walk Kernels
    Kriege, Nils
    Neumann, Marion
    Kersting, Kristian
    Mutzel, Petra
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 881 - 886