OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling Network

被引:35
作者
Behjati, Parichehr [1 ]
Rodriguez, Pau [2 ]
Mehri, Armin [1 ]
Hupont, Isabelle [3 ]
Fernandez Tena, Carles [3 ]
Gonzalez, Jordi [1 ]
机构
[1] Comp Vis Ctr, Barcelona, Catalonia, Spain
[2] Element AI, Montreal, PQ, Canada
[3] Herta Secur, Barcelona, Catalonia, Spain
来源
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021 | 2021年
关键词
D O I
10.1109/WACV48630.2021.00274
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Super-resolution (SR) has achieved great success due to the development of deep convolutional neural networks (CNNs). However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice. Moreover, most SR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model. We make the following contributions: first, we introduce a lightweight feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections. Second, to maximize the performance of the feature extractor, we propose a model agnostic reconstruction module that generates accurate high-resolution images from overscaled feature maps obtained from any SR architecture. Third, we introduce a multi-scale loss function to achieve generalization across scales. Experiments show that our proposal outperforms previous state-of-the-art approaches in standard benchmarks, while maintaining relatively low computation and memory requirements.
引用
收藏
页码:2693 / 2702
页数:10
相关论文
共 40 条
[1]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[2]  
Aitken A., 2017, Checkerboard artifact free sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution resize
[3]  
[Anonymous], INT C LEARNING REPRE
[4]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[5]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[6]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[7]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[8]  
Forrest N. Iandola, 2016, ARXIV
[9]   Face Hallucination Using Cascaded Super-Resolution and Identity Priors [J].
Grm, Klemen ;
Scheirer, Walter J. ;
Struc, Vitomir .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (01) :2150-2165
[10]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673