Uncertainty-Guided Lung Nodule Segmentation with Feature-Aware Attention

被引:12
作者
Yang, Han [3 ]
Shen, Lu [3 ]
Zhang, Mengke [3 ]
Wang, Qiuli [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn, Ctr Med Imaging Robot Analyt Comp & Learning MIRA, Suzhou, Peoples R China
[2] Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou, Peoples R China
[3] Chongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V | 2022年 / 13435卷
关键词
Lung nodule; Segmentation; Uncertainty; Attention mechanism; Computed tomography;
D O I
10.1007/978-3-031-16443-9_5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Since radiologists have different training and clinical experiences, they may provide various segmentation annotations for a lung nodule. Conventional studies choose a single annotation as the learning target by default, but they waste valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Guided Segmentation Network (UGS-Net), which learns the rich visual features from the regions that may cause segmentation uncertainty and contributes to a better segmentation result. With an Uncertainty-Aware Module, this network can provide a Multi-Confidence Mask (MCM), pointing out regions with different segmentation uncertainty levels. Moreover, this paper introduces a Feature-Aware Attention Module to enhance the learning of the nodule boundary and density differences. Experimental results show that our method can predict the nodule regions with different uncertainty levels and achieve superior performance in the LIDC-IDRI dataset.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 30 条
[1]  
Kohl SAA, 2019, Arxiv, DOI arXiv:1905.13077
[2]  
Amorim Paulo H. J., 2019, VipIMAGE 2019. Proceedings of the VII ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing. Lecture Notes in Computational Vision and Biomechanics (LNCVB 34), P286, DOI 10.1007/978-3-030-32040-9_30
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Dual-branch residual network for lung nodule segmentation [J].
Cao, Haichao ;
Liu, Hong ;
Song, Enmin ;
Hung, Chih-Cheng ;
Ma, Guangzhi ;
Xu, Xiangyang ;
Jin, Renchao ;
Lu, Jianguo .
APPLIED SOFT COMPUTING, 2020, 86
[5]   MTGAN: Mask and Texture-driven Generative Adversarial Network for Lung Nodule Segmentation [J].
Chen, Wei ;
Wang, Qiuli ;
Wang, Kun ;
Yang, Dan ;
Zhang, Xiaohong ;
Liu, Chen ;
Li, Yucong .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :1029-1035
[6]   Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks [J].
Gao, Mingchen ;
Bagci, Ulas ;
Lu, Le ;
Wu, Aaron ;
Buty, Mario ;
Shin, Hoo-Chang ;
Roth, Holger ;
Papadakis, Georgios Z. ;
Depeursinge, Adrien ;
Summers, Ronald M. ;
Xu, Ziyue ;
Mollura, Daniel J. .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (01) :1-6
[7]   Hessian based approaches for 3D lung nodule segmentation [J].
Goncalves, L. ;
Novo, J. ;
Campilho, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 61 :1-15
[8]  
Hasan SMK, 2018, WEST NEW YORK IMAG, DOI 10.1109/WNYIPW.2018.8576421
[9]   Supervised Uncertainty Quantification for Segmentation with Multiple Annotations [J].
Hu, Shi ;
Worrall, Daniel ;
Knegt, Stefan ;
Veeling, Bas ;
Huisman, Henkjan ;
Welling, Max .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :137-145
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+