Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins

被引:60
作者
Cao, Y. [1 ,2 ]
Wang, Y. B. [1 ]
An, X. H. [1 ]
Liao, X. Z. [1 ]
Kawasaki, M. [3 ,4 ,5 ]
Ringer, S. P. [1 ,6 ]
Langdon, T. G. [3 ,4 ,7 ]
Zhu, Y. T. [8 ,9 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[3] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[5] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
[6] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[7] Univ Southampton, Fac Engn & Environm, Mat Res Grp, Southampton SO17 1BJ, Hants, England
[8] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[9] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
欧洲研究理事会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Grain boundary; Twinning; De-twinning; Grain refinement; Steel; MICROSTRUCTURAL EVOLUTION; DEFORMATION MECHANISMS; MAXIMUM STRENGTH; GROWTH TWINS; REFINEMENT; STEEL; AL; NUCLEATION; DUCTILITY; BEHAVIOR;
D O I
10.1016/j.scriptamat.2015.01.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a grain boundary formation mechanism in face-centred cubic metals with low stacking fault energies. Severe plastic deformation produces primary nano-twins with a twin boundary spacing of several nanometres, followed by secondary twinning through the activation of Shockley partial dislocations. The partial dislocations interact with primary twin boundaries, resulting in de-twinning of the primary twins and producing very high densities of sessile dislocations. The accumulation of these dislocations produces new grain boundaries with neighbouring grains having similar orientations. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 101
页数:4
相关论文
共 38 条
[1]   Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion [J].
Cao, Y. ;
Wang, Y. B. ;
An, X. H. ;
Liao, X. Z. ;
Kawasaki, M. ;
Ringer, S. P. ;
Langdon, T. G. ;
Zhu, Y. T. .
ACTA MATERIALIA, 2014, 63 :16-29
[2]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[3]   A dislocation-based model for all hardening stages in large strain deformation [J].
Estrin, Y ;
Toth, LS ;
Molinari, A ;
Brechet, Y .
ACTA MATERIALIA, 1998, 46 (15) :5509-5522
[4]   Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion [J].
Figueiredo, Roberto B. ;
Cetlin, Paulo R. ;
Langdon, Terence G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (28) :8198-8204
[5]   Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging [J].
Gutierrez-Urrutia, I. ;
Raabe, D. .
ACTA MATERIALIA, 2011, 59 (16) :6449-6462
[6]   Hall-Petch relation and boundary strengthening [J].
Hansen, N .
SCRIPTA MATERIALIA, 2004, 51 (08) :801-806
[7]   Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation [J].
Hong, C. S. ;
Tao, N. R. ;
Huang, X. ;
Lu, K. .
ACTA MATERIALIA, 2010, 58 (08) :3103-3116
[8]   High angle boundaries formed by grain subdivision mechanisms [J].
Hughes, DA ;
Hansen, N .
ACTA MATERIALIA, 1997, 45 (09) :3871-3886
[9]   Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement [J].
Langdon, Terence G. .
ACTA MATERIALIA, 2013, 61 (19) :7035-7059
[10]   Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J].
Li, Xiaoyan ;
Wei, Yujie ;
Lu, Lei ;
Lu, Ke ;
Gao, Huajian .
NATURE, 2010, 464 (7290) :877-880