Integrated approach to free-space optical communication

被引:1
|
作者
Schmidt, Jason D. [1 ]
Louthain, James A. [1 ]
机构
[1] USAF, Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA
来源
ATMOSPHERIC PROPAGATION OF ELECTROMAGNETIC WAVES III | 2009年 / 7200卷
关键词
free-space optical communication; atmospheric turbulence; adaptive threshold; spatial diversity; multiple-transmitters; WEAK ATMOSPHERIC-TURBULENCE; SCREEN GENERATOR; ADAPTIVE OPTICS; PHASE; ANISOPLANATISM; BEAMS;
D O I
10.1117/12.812153
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Lasers offer tremendous advantages over RF communication systems in bandwidth and security. Atmospheric turbulence causes severe received power variations and high bit error rates (BERs) in airborne laser communication. If two or more laser beams are separated sufficiently, they can effectively "average out" the effects of the turbulence. This requisite separation distance is derived for multiple geometries, turbulence conditions, and turbulence effects. Integrating multiple techniques into a system alleviates the deleterious effects of turbulence without bulky adaptive optics systems. Wave optics simulations show multiple transmitters, receiver and transmitter trackers, and adaptive thresholding significantly reduce BER (by over 10,000 times).
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Sidelobe-modulated optical vortices for free-space communication
    Jia, P.
    Yang, Y.
    Min, C. J.
    Fang, H.
    Yuan, X. -C.
    OPTICS LETTERS, 2013, 38 (04) : 588 - 590
  • [42] Searching and Autoalignment Method for Indoor Free-space Optical Communication
    Lee, Kwanyong
    Cho, Seung-Rae
    Lee, Chang-Hee
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2019, 30 (06) : 230 - 236
  • [43] Crosstalk Suppression in Structured Light Free-Space Optical Communication
    Briantcev, Dmitrii
    Trichili, Abderrahmen
    Ooi, Boon S.
    Alouini, Mohamed-Slim
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 : 1623 - 1631
  • [44] Free-Space Communication Turbulence Compensation by Optical Phase Conjugation
    Chen, Junfan
    Huang, Yang
    Cai, Rujun
    Zheng, Anrui
    Yu, Zhaoxin
    Wang, Tianshu
    Liu, Zhi
    Gao, Shiming
    IEEE PHOTONICS JOURNAL, 2020, 12 (05):
  • [45] High Capacity Turbulence-Resilient Free-Space Chaotic Optical Communication Based on Vector Optical Field Manipulation
    Song, Zheng
    Zhang, Yiqun
    Xu, Mingfeng
    Pu, Mingbo
    Zhou, Mengjie
    Yu, Yong
    Ding, Jiazheng
    Chen, Shuangcheng
    Jiang, Ning
    Qiu, Kun
    Luo, Xiangang
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (24) : 8647 - 8654
  • [46] Performance evaluation of next generation free-space optical communication
    Kazaura, Kamugisha
    Omae, Kazunori
    Suzuki, Toshiji
    Matsumoto, Mitsuji
    Mutafungwa, Edward
    Murakami, Tadaaki
    Takahashi, Koichi
    Matsumoto, Hideki
    Wakamori, Kazuhiko
    Arimoto, Yoshinori
    IEICE TRANSACTIONS ON ELECTRONICS, 2007, E90C (02): : 381 - 388
  • [47] Real-Time Free-Space Optical Communication Technology
    Ao Xueyuan
    Yang Qi
    Dai Xiaoxiao
    Wu Junyu
    Wang Zhongzhong
    Wang Yuanxiang
    Liu Chen
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (12):
  • [48] Fiber coupling with adaptive optics for free-space optical communication
    Weyrauch, T
    Vorontsov, MA
    Gowens, JW
    Bifano, TG
    FREE-SPACE LASER COMMUNICATION AND LASER IMAGING, 2002, 4489 : 177 - 184
  • [49] Analytical approach to the calculation of probability of bit error and optimum thresholds in free-space optical communication
    Namazi, Nader
    Burris, Ray, Jr.
    Gilbreath, G. Charmaine
    OPTICAL ENGINEERING, 2007, 46 (02)
  • [50] FREE-SPACE OPTICAL COMMUNICATION - DETECTOR ARRAY APERTURE FOR OPTICAL COMMUNICATION THROUGH THIN CLOUDS
    ARNON, S
    KOPEIKA, NS
    OPTICAL ENGINEERING, 1995, 34 (02) : 518 - 522