POSITIVE SOLUTIONS FOR SCHRODINGER-POISSON-SLATER SYSTEM WITH COERCIVE POTENTIAL

被引:5
作者
Jiang, Yongsheng [1 ]
Wang, Zhengping [2 ,3 ]
Zhou, Huan-Song [2 ,3 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
[2] Wuhan Univ Technol, Dept Math, Sch Sci, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Ctr Math Sci, Sch Sci, Wuhan 430070, Peoples R China
关键词
Schrodinger-Poisson-Slater system; coercive potential; ground state; EXISTENCE;
D O I
10.12775/TMNA.2020.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following Schrodinger-Poisson-Slater type system: (0.1) {-Delta u + V (x)u + lambda phi(x)u = vertical bar u vertical bar(p-1) u, x is an element of R-3, -Delta phi = u(2), lim(vertical bar x vertical bar ->+infinity) phi(x) = 0, where lambda > 0 is a parameter, p is an element of (1, 2), V is an element of C(R-N, R-0(+) ). If Visa constant, or p is an element of (2,5) with V is an element of L-infinity(R-3), the above system has been considered in many papers. In this paper, we are interested in the case: p is an element of (1,2) and V being a coercive potential, i.e., lim(vertical bar x vertical bar ->+infinity) V(x) = infinity. We prove that there exists lambda(0) > 0 such that system (0.1) has at least two positive solutions u(lambda)(0) and u(lambda)(1) for any lambda is an element of (0, lambda(0)). Moreover, u(lambda)(0) is a ground state (i.e., the least energy solution) which must blow up as lambda -> 0. Particularly, when p is an element of (11/7, 2) and lambda > 0 is small enough, we show that the ground state of (0.1) must be non-radially symmetric even if V (x) = V (vertical bar x vertical bar), such as V (x) = vertical bar x vertical bar(2).
引用
收藏
页码:427 / 439
页数:13
相关论文
共 22 条
[1]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[2]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[3]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[4]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[5]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[6]   Multiple positive solutions of a class of non autonomous Schrodinger-Poisson systems [J].
Chen, Jianqing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :13-26
[7]   On the radiality of constrained minimizers to the Schrodinger-Poisson-Slater energy [J].
Georgiev, Vladimir ;
Prinari, Francesca ;
Visciglia, Nicola .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (03) :369-376
[8]  
Ianni I, 2008, ADV NONLINEAR STUD, V8, P573
[9]  
Ianni I, 2013, TOPOL METHOD NONL AN, V41, P365
[10]   Sharp nonexistence results of prescribed L2-norm solutions for some class of Schrodinger-Poisson and quasi-linear equations [J].
Jeanjean, Louis ;
Luo, Tingjian .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04) :937-954