Sliding Mode Control of an Exoskeleton Robot for Use in Upper-Limb Rehabilitation

被引:0
|
作者
Babaiasl, Mahdieh [1 ]
Goldar, Saeede Nazari [2 ]
Barhaghtalab, Mojtaba Hadi [3 ]
Meigoli, Vahid [3 ]
机构
[1] Univ Tabriz, Sch Engn Emerging Technol, Mechatron Res Lab, Tabriz, Iran
[2] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
[3] Persian Gulf Univ, Dept Control Engn, Bushehr, Iran
来源
2015 3RD RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM) | 2015年
关键词
exoskeleton robots; upper-limb rehabilitation; Sliding Mode Controller (SMC); PID controller; trajectory tracking; UPPER-EXTREMITY; STROKE; ARMIN;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, mechanical design and control of an exoskeleton robot for shoulder rehabilitation after stroke are presented. Initially, mechanical design of a new 3 degrees of freedom (DOF) exoskeleton robot for shoulder joint rehabilitation is presented. All robot measurements are based on the properties of upper limb of an adult person. A new open circular mechanism is proposed for the third joint. Afterwards, direct and inverse kinematics, Jacobian matrix, singular points, and dynamics of the robot are presented. In order to study the ability of the robot to follow the optimized trajectories, sliding mode controller (SMC) is proposed to track desired trajectories. In most rehabilitation robots, the attention is on robot's mechanical design, so linear controllers are used to control the robot. However, rehabilitation robots are non-linear in nature and non-linear control methods are required that can reject uncertainties and arc resistant to parameter changes. SMC is robust due to its nonlinear nature, and can reject uncertainties and disturbances applying on the system such as patient's hand tremor. The parameters of the SMC are tuned using Genetic Algorithm (GA). The main advantage of this robot compared to similar systems are being low weight, having a special mechanism for third joint that solves the known issues associated with long wiring and closed mechanisms, allowing translational degrees of freedom of the shoulder, ease of use, comfort for the patient and the tracking performance of the controllers.
引用
收藏
页码:694 / 701
页数:8
相关论文
共 50 条
  • [1] Sliding mode control of an exoskeleton robot for use in upper-limb rehabilitation
    School of Engineering Emerging Technologies, Mechatronics Research Lab, University of Tabriz, Tabriz, Iran
    不详
    不详
    Int. Conf. Robot. Mechatronics, ICROM, (694-701):
  • [2] Fuzzy Sliding Mode Control of An Upper-Limb Exoskeleton Robot
    Teng, Long
    Bai, Shaoping
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 12 - 17
  • [3] Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton
    Riani, A.
    Madani, T.
    Benallegue, A.
    Djouani, K.
    CONTROL ENGINEERING PRACTICE, 2018, 75 : 108 - 117
  • [4] Fuzzy Sliding Mode Control of 5 DOF Upper-limb Exoskeleton Robot
    Razzaghian, Amir
    Moghaddam, Reihaneh Kardehi
    SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 25 - 32
  • [5] The analysis and control of exoskeleton upper-limb rehabilitation robot
    Wang, Lan
    Yin, Zhengqian
    Sun, Yuanhang
    Key Engineering Materials, 2014, 572 (01) : 619 - 623
  • [6] Fuzzy Sliding Mode Admittance Control of the Upper Limb Rehabilitation Exoskeleton Robot
    Wu Q.
    Wang X.
    Wu H.
    Chen B.
    Jiqiren/Robot, 2018, 40 (04): : 457 - 465
  • [7] Research on control system of an exoskeleton upper-limb rehabilitation robot
    Wang L.
    Hu X.
    Hu J.
    Fang Y.
    He R.
    Yu H.
    Yu, Hongliu (yhl98@hotmail.com), 1600, West China Hospital, Sichuan Institute of Biomedical Engineering (33): : 1168 - 1175
  • [8] An upper-limb exoskeleton robot control using a novel fast fuzzy sliding mode control
    Rahmani, Mehran
    Rahman, Mohammad Habibur
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2581 - 2592
  • [9] Fuzzy Sliding Mode Control of an Upper Limb Exoskeleton for Robot-assisted Rehabilitation
    Wu, Qingcong
    Wang, Xingsong
    Du, Fengpo
    Zhu, Qing
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA) PROCEEDINGS, 2015, : 451 - 456
  • [10] A reinforcement learning based sliding mode control for passive upper-limb exoskeleton
    Hfaiedh, Afef
    Jellali, Amal
    Khraief, Nahla
    Belghith, Safya
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2024, 21 (05):