Curvature-driven foam coarsening on a sphere: A computer simulation

被引:3
|
作者
Ryan, Shawn D. [1 ,2 ]
Zheng, Xiaoyu [1 ]
Palffy-Muhoray, Peter [2 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44240 USA
[2] Kent State Univ, Inst Liquid Crystal, Kent, OH 44240 USA
基金
美国国家科学基金会;
关键词
DIMENSIONAL SOAP FROTH; NORMAL GRAIN-GROWTH; POTTS-MODEL; 2-DIMENSIONAL FOAM; VERTEX MODELS; MONTE-CARLO; DYNAMICS; PATTERNS; KINETICS; DRAINAGE;
D O I
10.1103/PhysRevE.93.053301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The von Neumann-Mullins law for the area evolution of a cell in the plane describes how a dry foam coarsens in time. Recent theory and experiment suggest that the dynamics are different on the surface of a three-dimensional object such as a sphere. This work considers the dynamics of dry foams on the surface of a sphere. Starting from first principles, we use computer simulation to show that curvature-driven motion of the cell boundaries leads to exponential growth and decay of the areas of cells, in contrast to the planar case where the growth is linear. We describe the evolution and distribution of cells to the final stationary state.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] SIMULATION OF CURVATURE-DRIVEN GRAIN-GROWTH BY USING A MODIFIED MONTE-CARLO ALGORITHM
    RADHAKRISHNAN, B
    ZACHARIA, T
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1995, 26 (01): : 167 - 180
  • [42] Curvature-driven PDE methods for matrix-valued images
    Feddern, Christian
    Weickert, Joachim
    Burgeth, Bernhard
    Welk, Martin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 69 (01) : 93 - 107
  • [43] Curvature-driven modeling and rendering of point-based surfaces
    Gois, Joao Paulo
    Tejada, Eduardo
    Etiene, Tiago
    Nonato, Luis Gustavo
    Castelo, Antonio
    Ertl, Thomas
    SIBGRAPI 2006: XIX BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, : 27 - +
  • [44] ELECTROMAGNETIC THEORY OF CURVATURE-DRIVEN TRAPPED-ELECTRON INSTABILITIES
    ANDERSSON, P
    WEILAND, J
    PHYSICAL REVIEW A, 1983, 27 (03): : 1556 - 1563
  • [45] Stabilization of magnetic curvature-driven Rayleigh-Taylor instabilities
    Onishchenko, O. G.
    Pokhotelov, O. A.
    Stenflo, L.
    Shukla, P. K.
    JOURNAL OF PLASMA PHYSICS, 2012, 78 : 93 - 97
  • [46] Curvature-Driven Rigid Nanowire Orientation inside Nanotube Walls
    Park, Kiho
    Choi, Kiwoon
    Lee, Joon Ho
    Park, Sung Ho
    Lee, Se Cheol
    Lee, Han Sup
    ACS MACRO LETTERS, 2012, 1 (01) : 110 - 114
  • [47] A curvature-driven cloud removal method for remote sensing images
    Yu, Xiaoyu
    Pan, Jun
    Wang, Mi
    Xu, Jiangong
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (04): : 1326 - 1347
  • [48] Topological phases and curvature-driven pattern formation in cholesteric shells
    Negro, G.
    Carenza, L. N.
    Gonnella, G.
    Marenduzzo, D.
    Orlandini, E.
    SOFT MATTER, 2023, 19 (10) : 1987 - 2000
  • [49] A mesoscale cellular automaton model for curvature-driven grain growth
    Y. J. Lan
    D. Z. Li
    Y. Y. Li
    Metallurgical and Materials Transactions B, 2006, 37 : 119 - 129
  • [50] Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport
    Mondal, Ranajit
    Semwal, Shivani
    Kumar, P. Logesh
    Thampi, Sumesh P.
    Basavarar, Madivala G.
    LANGMUIR, 2018, 34 (38) : 11473 - 11483