Supersymmetric construction of self-consistent condensates in the large N Gross-Neveu model: Solitons on finite-gap potentials

被引:1
作者
Arancibia, Adrian [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
关键词
FIELD-THEORY; FREE-ENERGY; SUPERCONDUCTIVITY; MATTER;
D O I
10.1103/PhysRevD.98.065013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the present work, the set of stationary solutions of the Gross-Neveu model in the 't Hooft limit is extended. Such an extension is obtained by striving for a hidden supersymmetry associated with disconnected sets of stationary solutions. How the supersymmetry arises from the Darboux-Miura transformations between Lax pairs of the stationary modified Korteweg-de Vries and the stationary Korteweg-de Vries hierarchies is shown, associating the correspondent superpotentials with self-consistent condensates for the Gross-Neveu model.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
[Anonymous], 2006, J PHYS A, V39, P21
[3]   Soliton defects in one-gap periodic system and exotic supersymmetry [J].
Arancibia, Adrian ;
Correa, Francisco ;
Jakubsky, Vit ;
Guilarte, Juan Mateos ;
Plyushchay, Mikhail S. .
PHYSICAL REVIEW D, 2014, 90 (12)
[4]   Fermion in a multi-kink-antikink soliton background, and exotic supersymmetry [J].
Arancibia, Adrian ;
Mateos Guilarte, Juan ;
Plyushchay, Mikhail S. .
PHYSICAL REVIEW D, 2013, 88 (08)
[5]   Effect of scalings and translations on the supersymmetric quantum mechanical structure of soliton systems [J].
Arancibia, Adrian ;
Mateos Guilarte, Juan ;
Plyushchay, Mikhail S. .
PHYSICAL REVIEW D, 2013, 87 (04)
[6]   Inhomogeneous condensates in the thermodynamics of the chiral NJL2 model [J].
Basar, Goekce ;
Dunne, Gerald V. ;
Thies, Michael .
PHYSICAL REVIEW D, 2009, 79 (10)
[7]   Self-consistent crystalline condensate in chiral Gross-Neveu and Bogoliubov-de Gennes systems [J].
Basar, Goekce ;
Dunne, Gerald V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[8]  
Belokolos E. D., 1994, Algebro-geometric approach to nonlinear integrable equations
[9]   Commutative ordinary differential operations [J].
Burchnall, JL ;
Chaundy, TW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1928, 118 (780) :557-583
[10]  
CAMPBELL DK, 1981, PHYS REV B, V24, P4859, DOI 10.1103/PhysRevB.24.4859