Automated rejection and repair of bad trials in MEG/EEG

被引:0
作者
Jas, Mainak [1 ]
Engemann, Denis [2 ]
Raimondo, Federico [3 ]
Bekhti, Yousra [1 ]
Gramfort, Alexandre [1 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, CNRS LTCI, St Aubin, France
[2] Univ Paris Sud, Univ Paris Saclay, INSERM, CEA DSV I2BM,Cognit Neuroimaging Unit,NeuroSpin C, F-91191 Gif Sur Yvette, France
[3] Univ Buenos Aires, Dept Comp, RA-1053 Buenos Aires, DF, Argentina
来源
2016 6TH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI) | 2016年
关键词
magnetoencephalography; electroencephalography; preprocessing; artifact rejection; automation; machine learning; EEG; MEG; ARTIFACTS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an automated solution for detecting bad trials in magneto-/electroencephalography (M/EEG). Bad trials are commonly identified using peak-to-peak rejection thresholds that are set manually. This work proposes a solution to determine them automatically using cross-validation. We show that automatically selected rejection thresholds perform at par with manual thresholds, which can save hours of visual data inspection. We then use this automated approach to learn a sensor-specific rejection threshold. Finally, we use this approach to remove trials with finer precision and/or partially repair them using interpolation. We illustrate the performance on three public datasets. The method clearly performs better than a competitive benchmark on a 19-subject Faces dataset.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 19 条
  • [1] [Anonymous], 18 INT C BIOM PAR
  • [2] [Anonymous], 2013, TOBI WORKSHOP
  • [3] Bigdely-Shamlo N., 2015, FRONT NEUROINFORM, V9
  • [4] De Brabanter J., 2003, TECH REP
  • [5] Sensor noise suppression
    de Cheveigne, Alain
    Simon, Jonathan Z.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2008, 168 (01) : 195 - 202
  • [6] Detecting and adjusting for artifacts in fMRI time series data
    Diedrichsen, J
    Shadmehr, R
    [J]. NEUROIMAGE, 2005, 27 (03) : 624 - 634
  • [7] Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals
    Engemann, Denis A.
    Gramfort, Alexandre
    [J]. NEUROIMAGE, 2015, 108 : 328 - 342
  • [8] PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals
    Goldberger, AL
    Amaral, LAN
    Glass, L
    Hausdorff, JM
    Ivanov, PC
    Mark, RG
    Mietus, JE
    Moody, GB
    Peng, CK
    Stanley, HE
    [J]. CIRCULATION, 2000, 101 (23) : E215 - E220
  • [9] MEG and EEG data analysis with MNE-Python']Python
    Gramfort, Alexandre
    Luessi, Martin
    Larson, Eric
    Engemann, Denis A.
    Strohmeier, Daniel
    Brodbeck, Christian
    Goj, Roman
    Jas, Mainak
    Brooks, Teon
    Parkkonen, Lauri
    Haemaelaeinen, Matti
    [J]. FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [10] MNE software for processing MEG and EEG data
    Gramfort, Alexandre
    Luessi, Martin
    Larson, Eric
    Engemann, Denis A.
    Strohmeier, Daniel
    Brodbeck, Christian
    Parkkonen, Lauri
    Haemaelaeinen, Matti S.
    [J]. NEUROIMAGE, 2014, 86 : 446 - 460