Predicting the true density of commercial biomass pellets using near-infrared hyperspectral imaging

被引:3
|
作者
Pitak, Lakkana [1 ]
Saengprachatanarug, Khwantri [1 ]
Laloon, Kittipong [1 ]
Posom, Jetsada [1 ,2 ]
机构
[1] Khon Kaen Univ, Fac Engn, Dept Agr Engn, Khon Kaen 40002, Thailand
[2] Khon Kaen Univ, Ctr Alternat Energy Res & Dev, Khon Kaen, Thailand
来源
ARTIFICIAL INTELLIGENCE IN AGRICULTURE | 2022年 / 6卷
关键词
True density; Hyperspectral imaging; Biomass pellet; Variable selection method; SUCCESSIVE PROJECTIONS ALGORITHM; WAVELENGTH SELECTION; MOISTURE-CONTENT; HEATING VALUE; SPECTROSCOPY;
D O I
10.1016/j.aiia.2022.11.004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The use of biomass is increasing because it is a form of renewable energy that provides high heating value. Rapid measurements could be used to check the quality of biomass pellets during production. This research aims to apply a near-infrared (NIR) hyperspectral imaging system for the evaluation of the true density of individual bio-mass pellets during the production process. Real-time measurement of the true density could be beneficial for the operation settings, such as the ratio of the binding agent to the raw material, the temperature of operation, the production rate, and the mixing ratio. The true density could also be used for rough measurement of the bulk density, which is a necessary parameter in commercial production. Therefore, knowledge of the true density is required during production in order to maintain the pellet quality as well as operation conditions. A prediction model was developed using partial least squares (PLS) regression across different wavelengths selected using different spectral pre-treatment methods and variable selection methods. After model development, the perfor-mance of the models was compared. The best model for predicting the true density of individual pellets was developed with first-derivative spectra (D1) and variables selected by the genetic algorithm (GA) method, and the number of variables was reduced from 256 to 53 wavelengths. The model gave R2cal, R2val, SEC, SEP, and RPD values of 0.88, 0.89, 0.08 g/cm3, 0.07 g/cm3, and 3.04, respectively. The optimal prediction model was applied to construct distribution maps of the true density of individual biomass pellets, with the level of the predicted values displayed in colour bars. This imaging technique could be used to check visually the true density of biomass pellets during the production process for warnings to quality control equipment.& COPY; 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [41] Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System
    Lee, Hoonsoo
    Kim, Moon S.
    Jeong, Danhee
    Delwiche, Stephen R.
    Chao, Kuanglin
    Cho, Byoung-Kwan
    SENSORS, 2014, 14 (10): : 18837 - 18850
  • [42] Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics
    Yi, Weisong
    Zhang, Jian
    Jiang, Houmin
    Zhang, Niya
    TWELFTH INTERNATIONAL CONFERENCE ON PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE (PIBM 2014), 2014, 9230
  • [43] Evaluation ofDianhongblack tea quality using near-infrared hyperspectral imaging technology
    Ren, Guangxin
    Wang, Yujie
    Ning, Jingming
    Zhang, Zhengzhu
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (05) : 2135 - 2142
  • [44] Intraoperative bile duct visualization using near-infrared hyperspectral video imaging
    Zuzak, Karel J.
    Naik, Sabira C.
    Alexandrakis, George
    Hawkins, Doyle
    Behbehani, Khosrow
    Livingston, Edward
    AMERICAN JOURNAL OF SURGERY, 2008, 195 (04) : 491 - 497
  • [45] Rapid and nondestructive determination of sorghum purity combined with deep forest and near-infrared hyperspectral imaging
    Huang, Haoping
    Hu, Xinjun
    Tian, Jianping
    Peng, Xinghui
    Luo, Huibo
    Huang, Dan
    Zheng, Jia
    Wang, Hong
    FOOD CHEMISTRY, 2022, 377
  • [46] Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview
    Reddy, Priyanka
    Guthridge, Kathryn M.
    Panozzo, Joe
    Ludlow, Emma J.
    Spangenberg, German C.
    Rochfort, Simone J.
    SENSORS, 2022, 22 (05)
  • [47] Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat
    Yu, Ke-Qiang
    Zhao, Yan-Ru
    Liu, Zi-Yi
    Li, Xiao-Li
    Liu, Fei
    He, Yong
    FOOD AND BIOPROCESS TECHNOLOGY, 2014, 7 (11) : 3077 - 3087
  • [48] Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder
    Huang, Min
    Kim, Moon S.
    Chao, Kuanglin
    Qin, Jianwei
    Mo, Changyeun
    Esquerre, Carlos
    Delwiche, Stephen
    Zhu, Qibing
    SENSORS, 2016, 16 (04):
  • [49] Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging
    Jiang, Hongzhe
    Yuan, Weidong
    Ru, Yu
    Chen, Qing
    Wang, Jinpeng
    Zhou, Hongping
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 282
  • [50] Rapid and nondestructive quantification of deoxynivalenol in individual wheat kernels using near-infrared hyperspectral imaging and chemometrics
    Shen, Guanghui
    Cao, Yaoyao
    Yin, Xianchao
    Dong, Fei
    Xu, Jianhong
    Shi, Jianrong
    Lee, Yin-Won
    FOOD CONTROL, 2022, 131