Predicting the true density of commercial biomass pellets using near-infrared hyperspectral imaging

被引:3
|
作者
Pitak, Lakkana [1 ]
Saengprachatanarug, Khwantri [1 ]
Laloon, Kittipong [1 ]
Posom, Jetsada [1 ,2 ]
机构
[1] Khon Kaen Univ, Fac Engn, Dept Agr Engn, Khon Kaen 40002, Thailand
[2] Khon Kaen Univ, Ctr Alternat Energy Res & Dev, Khon Kaen, Thailand
来源
ARTIFICIAL INTELLIGENCE IN AGRICULTURE | 2022年 / 6卷
关键词
True density; Hyperspectral imaging; Biomass pellet; Variable selection method; SUCCESSIVE PROJECTIONS ALGORITHM; WAVELENGTH SELECTION; MOISTURE-CONTENT; HEATING VALUE; SPECTROSCOPY;
D O I
10.1016/j.aiia.2022.11.004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The use of biomass is increasing because it is a form of renewable energy that provides high heating value. Rapid measurements could be used to check the quality of biomass pellets during production. This research aims to apply a near-infrared (NIR) hyperspectral imaging system for the evaluation of the true density of individual bio-mass pellets during the production process. Real-time measurement of the true density could be beneficial for the operation settings, such as the ratio of the binding agent to the raw material, the temperature of operation, the production rate, and the mixing ratio. The true density could also be used for rough measurement of the bulk density, which is a necessary parameter in commercial production. Therefore, knowledge of the true density is required during production in order to maintain the pellet quality as well as operation conditions. A prediction model was developed using partial least squares (PLS) regression across different wavelengths selected using different spectral pre-treatment methods and variable selection methods. After model development, the perfor-mance of the models was compared. The best model for predicting the true density of individual pellets was developed with first-derivative spectra (D1) and variables selected by the genetic algorithm (GA) method, and the number of variables was reduced from 256 to 53 wavelengths. The model gave R2cal, R2val, SEC, SEP, and RPD values of 0.88, 0.89, 0.08 g/cm3, 0.07 g/cm3, and 3.04, respectively. The optimal prediction model was applied to construct distribution maps of the true density of individual biomass pellets, with the level of the predicted values displayed in colour bars. This imaging technique could be used to check visually the true density of biomass pellets during the production process for warnings to quality control equipment.& COPY; 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [21] Nondestructive Determination of Apple Internal Qualities Using Near-Infrared Hyperspectral Reflectance Imaging
    Dong, Jinlei
    Guo, Wenchuan
    FOOD ANALYTICAL METHODS, 2015, 8 (10) : 2635 - 2646
  • [22] Nondestructive Determination of Apple Internal Qualities Using Near-Infrared Hyperspectral Reflectance Imaging
    Jinlei Dong
    Wenchuan Guo
    Food Analytical Methods, 2015, 8 : 2635 - 2646
  • [23] Hyperspectral Imaging of Lipids using Near-infrared Super Continuum Light
    Ikawa, T.
    Ishii, K.
    Awazu, K.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 2 - DIAGNOSTIC IMAGING, 2009, 25 : 630 - 632
  • [24] Modeling for mung bean variety classification using visible and near-infrared hyperspectral imaging
    Xie, Chuanqi
    He, Yong
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2018, 11 (01) : 187 - 191
  • [25] Prediction of sorghum oil content using near-infrared hyperspectral imaging
    Mendoza, Princess Tiffany D.
    Armstrong, Paul R.
    Peiris, Kamaranga H. S.
    Siliveru, Kaliramesh
    Bean, Scott R.
    Pordesimo, Lester O.
    CEREAL CHEMISTRY, 2023, 100 (03) : 775 - 783
  • [26] Visualization of hydrolysis in polylactide using near-infrared hyperspectral imaging and chemometrics
    Muroga, Shun
    Hikima, Yuta
    Ohshima, Masahiro
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (08)
  • [27] Identifying CPPU-Treated Kiwifruits Using Near-Infrared Hyperspectral Imaging Technology
    Liu, Dayang
    Guo, Wenchuan
    FOOD ANALYTICAL METHODS, 2017, 10 (05) : 1273 - 1283
  • [28] Mapping of Leaf Water Content Using Near-Infrared Hyperspectral Imaging
    Higa, Sakura
    Kobori, Hikaru
    Tsuchikawa, Satoru
    APPLIED SPECTROSCOPY, 2013, 67 (11) : 1302 - 1307
  • [29] IDENTIFICATION OF WINE GRAPE VARIETIES BASED ON NEAR-INFRARED HYPERSPECTRAL IMAGING
    Cheng, Y. L.
    Yang, S. Q.
    Liu, X.
    Zhang, E. Y.
    Song, Z. S.
    APPLIED ENGINEERING IN AGRICULTURE, 2019, 35 (06) : 959 - 967
  • [30] Near-infrared Hyperspectral Imaging of Atherosclerotic Tissue Phantom
    Ishii, K.
    Nagao, R.
    Kitayabu, A.
    Awazu, K.
    CLINICAL AND BIOMEDICAL SPECTROSCOPY AND IMAGING III, 2013, 8798