Fast algorithm for computing the roots of error locator polynomials up to degree II in Reed-Solomon decoders

被引:42
作者
Truong, TK [1 ]
Jeng, JH
Reed, IS
机构
[1] I Shou Univ, Dept Informat Engn, Kaohsiung 840, Taiwan
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Berlekamp-Rumsey-Solomon algorithm; Chien search; error locator polynomial; p-polynomial; Reed-Solomon code;
D O I
10.1109/26.923801
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The central problem in the implementation of a Reed-Solomon code is finding the roots of the error locator polynomial. In 1967, Berlekamp et al, found an algorithm for finding the roots of an affine polynomial in GF(2(m)) that can be used to solve this problem, In this paper, it is shown that this Berlekamp-Rumsey-Solomon algorithm, together with the Chien-search method, makes possible a fast decoding algorithm in the standard-basis representation that is naturally suitable in a software implementation. Finally, simulation results for this fast algorithm are given.
引用
收藏
页码:779 / 783
页数:5
相关论文
共 9 条