New solvable singular potentials

被引:22
作者
Dutt, R [1 ]
Gangopadhyaya, A
Rasinariu, C
Sukhatme, U
机构
[1] Visva Bharati Univ, Dept Phys, Santini Ketan 731235, W Bengal, India
[2] Loyola Univ, Dept Phys, Chicago, IL 60626 USA
[3] Columbia Coll Chicago, Dept Sci & Math, Chicago, IL 60605 USA
[4] Univ Illinois, Dept Phys MC 273, Chicago, IL 60607 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 19期
关键词
D O I
10.1088/0305-4470/34/19/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain three new solvable, real, shape-invariant potentials starting from the harmonic oscillator, Poschl-Teller I and Poschl-Teller II potentials on the half-axis and extending their domain to the full line, while taking special care to regularize the inverse-square singularity at the origin. The regularization procedure gives rise to a delta-function behaviour at the origin. Our new systems possess underlying nonlinear potential algebras, which can also be used to determine their spectra analytically.
引用
收藏
页码:4129 / 4142
页数:14
相关论文
共 33 条
[1]   SUSY quantum mechanics with complex superpotentials and real energy spectra [J].
Andrianov, AA ;
Ioffe, MV ;
Cannata, F ;
Dedonder, JP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17) :2675-2688
[2]  
[Anonymous], PISMA ZH EKSP TEOR F
[3]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[4]   Algebraic approach to shape invariance [J].
Balantekin, AB .
PHYSICAL REVIEW A, 1998, 57 (06) :4188-4191
[5]  
BALANTEKIN AB, 1997, QUANTPH9712018
[6]   NEW EXACTLY SOLVABLE HAMILTONIANS - SHAPE INVARIANCE AND SELF-SIMILARITY [J].
BARCLAY, DT ;
DUTT, R ;
GANGOPADHYAYA, A ;
KHARE, A ;
PAGNAMENTA, A ;
SUKHATME, U .
PHYSICAL REVIEW A, 1993, 48 (04) :2786-2797
[7]   IS THE LOWEST ORDER SUPERSYMMETRIC WKB APPROXIMATION EXACT FOR ALL SHAPE INVARIANT POTENTIALS [J].
BARCLAY, DT ;
KHARE, A ;
SUKHATME, U .
PHYSICS LETTERS A, 1993, 183 (04) :263-266
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[10]   Schrodinger operators with complex potential but real spectrum [J].
Cannata, F ;
Junker, G ;
Trost, J .
PHYSICS LETTERS A, 1998, 246 (3-4) :219-226