Fast numerical calculation of Fresnel patterns in convergent systems

被引:71
作者
Mas, D [1 ]
Pérez, J [1 ]
Hernández, C [1 ]
Vázquez, C [1 ]
Miret, JJ [1 ]
Illueca, C [1 ]
机构
[1] Univ Alicante, Dept Interuniv Opt, E-03080 Alicante, Spain
关键词
Fresnel integral calculation; convergent systems; discrete Fourier transform; fractional Fourier transform;
D O I
10.1016/j.optcom.2003.09.046
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this communication, the authors study diffraction patterns calculation under convergent illumination. We analyze known fast algorithms using the Fourier transform and the fractional Fourier transform (FRT). We show that interference between convergent phase factor and the kernel of the different numerical Fresnel transformation may impose serious restrictions on the range of distances, where diffraction patterns can be accurately calculated. We review free space diffraction patterns calculation algorithms. In that case, the FRT provides a unified algorithm for the calculation of amplitude patterns in all the range of distances. On the contrary, we show below that, when convergent illumination is used, none of the algorithms is capable of providing a unified framework of calculation for the entire region of interest from object to focus. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 258
页数:14
相关论文
共 25 条
[1]   THE FRACTIONAL FOURIER-TRANSFORM IN OPTICAL PROPAGATION PROBLEMS [J].
ALIEVA, T ;
LOPEZ, V ;
AGULLOLOPEZ, F ;
ALMEIDA, LB .
JOURNAL OF MODERN OPTICS, 1994, 41 (05) :1037-1044
[2]  
Atchison David A., 2000, OPTICS HUMAN EYE, V35
[3]   ANALYTICAL AND NUMERICAL APPROXIMATIONS IN FRESNEL DIFFRACTION - PROCEDURES BASED ON THE GEOMETRY OF THE CORNU SPIRAL [J].
CARCOLE, E ;
BOSCH, S ;
CAMPOS, J .
JOURNAL OF MODERN OPTICS, 1993, 40 (06) :1091-1106
[4]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[5]   NUMERICAL EVALUATION OF DIFFRACTION INTEGRALS FOR APERTURES OF COMPLICATED SHAPE [J].
DARCIO, LA ;
BRAAT, JJM ;
FRANKENA, BJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10) :2664-2674
[6]   Fractional discrete Fourier transforms [J].
Deng, ZT ;
Caulfield, HJ ;
Schamschula, M .
OPTICS LETTERS, 1996, 21 (18) :1430-1432
[7]   Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm [J].
Garcia, J ;
Mas, D ;
Dorsch, RG .
APPLIED OPTICS, 1996, 35 (35) :7013-7018
[8]  
Gonzalez RC, 1987, Digital Image Processing, V2nd
[9]  
Goodman W., 2005, INTRO FOURIER OPTICS, V3rd
[10]   EFFICIENT FRESNEL-TRANSFORM ALGORITHM-BASED ON FRACTIONAL FRESNEL DIFFRACTION [J].
HAMAM, H ;
DELATOCNAYE, JLDB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (09) :1920-1931