Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

被引:7
|
作者
Wang, Chen [1 ]
Wu, Jie [2 ]
Wang, Jianzhou [3 ]
Hu, Zhongjin [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Northwest Univ Nationalities, Sch Math & Comp Sci, Lanzhou 730030, Peoples R China
[3] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
关键词
DECOMPOSITION; PREDICTION; ENERGY; SVM; ENSEMBLE;
D O I
10.1155/2016/4896854
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: ( I) data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition ( EMD), which reduces the effect of noise on the wind speed data; ( II) artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine ( SVM) model are optimized by the cuckoo search ( CS) algorithm; ( III) parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent ( SD) method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small rootmean squared errors and mean absolute percentage errors.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Short-term Load Forecasting Approach Based on RS and PSO Support Vector Machine
    Li Jin-ying
    Li Jin-chao
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 8286 - +
  • [32] Research of Short-Term Wind Speed Forecasting Based on the Hybrid Model of Optimized Quadratic Decomposition and Improved Monarch Butterfly
    Chen, Gonggui
    Qiu, Pan
    Hu, Xiaorui
    Long, Fangjia
    Long, Hongyu
    ENGINEERING LETTERS, 2022, 30 (01) : 73 - 90
  • [33] Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm
    Yu, Mingxing
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2020, 17 (05) : 332 - 348
  • [34] Noise model based v-support vector regression with its application to short-term wind speed forecasting
    Hu, Qinghua
    Zhang, Shiguang
    Xie, Zongxia
    Mi, Jusheng
    Wan, Jie
    NEURAL NETWORKS, 2014, 57 : 1 - 11
  • [35] Short-Term Wind Speed Forecasting Using a Multi-model Ensemble
    Zhang, Chi
    Wei, Haikun
    Liu, Tianhong
    Zhu, Tingting
    Zhang, Kanjian
    ADVANCES IN NEURAL NETWORKS - ISNN 2015, 2015, 9377 : 398 - 406
  • [36] Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model
    Joseph, Lionel P.
    Deo, Ravinesh C.
    Casillas-Perez, David
    Prasad, Ramendra
    Raj, Nawin
    Salcedo-Sanz, Sancho
    APPLIED ENERGY, 2024, 359
  • [37] Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm
    Wang, Jian
    Yang, Zhongshan
    RENEWABLE ENERGY, 2021, 171 : 1418 - 1435
  • [38] A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
    Niu, Xinsong
    Wang, Jiyang
    APPLIED ENERGY, 2019, 241 (519-539) : 519 - 539
  • [39] An application of backtracking search optimization-based least squares support vector machine for prediction of short-term wind speed
    Tian, Zhongda
    Ren, Yi
    Wang, Gang
    WIND ENGINEERING, 2020, 44 (03) : 266 - 281
  • [40] Support Vector Regression Based on Grid-Search Method for Short-Term Wind Power Forecasting
    Zhang, Hong
    Chen, Lixing
    Qu, Yong
    Zhao, Guo
    Guo, Zhenwei
    JOURNAL OF APPLIED MATHEMATICS, 2014,