Change-Point Detection using Krylov Subspace Learning

被引:0
作者
Ide, Tsuyoshi [1 ]
Tsuda, Koji [2 ]
机构
[1] IBM Res Corp, Tokyo Res Lab, Yorktown Hts, NY 10598 USA
[2] Max Planck Inst Biol Cybernet, Tubingen, Germany
来源
PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING | 2007年
关键词
PCA; Krylov subspace; inner product; change-point detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an efficient algorithm for principal component analysis (PCA) that is applicable when only the inner product with a given vector is needed. We show that Krylov subspace learning works well both in matrix compression and implicit calculation of the inner product by taking full advantage of the arbitrariness of the seed vector. We apply our algorithm to a PCA-based change-point detection algorithm, and show that it results in about 50 times improvement in computational time.
引用
收藏
页码:515 / +
页数:2
相关论文
共 12 条
[1]  
[Anonymous], 1998, TECHN EN AW TEA
[2]  
[Anonymous], 2002, UCR TIME SERIES DATA
[3]  
Chennubhotla C., 2005, ADV NEURAL INFORM PR, P273
[4]   Spectral grouping using the Nystrom method [J].
Fowlkes, C ;
Belongie, S ;
Chung, F ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (02) :214-225
[5]  
Freitas N. D., 2006, ADV NEURAL INFORM PR, P251
[6]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[7]  
Idé T, 2005, SIAM PROC S, P571
[8]   An algorithm based on singular spectrum analysis for change-point detection [J].
Moskvina, V ;
Zhigljavsky, A .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (02) :319-352
[9]  
PRESS HW, 1989, NUMERICAL RECIPES
[10]  
Roweis S, 1998, ADV NEUR IN, V10, P626