Electronic Structure and Redox Properties of the Ti-Doped Zirconia (111) Surface

被引:22
作者
Chauke, Hasani R. [2 ]
Murovhi, Phathutshedzo [2 ]
Ngoepe, Phuti E. [2 ]
de Leeuw, Nora H. [1 ]
Grau-Crespo, Ricardo [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Univ Limpopo, Mat Modelling Ctr, ZA-0727 Sovenga, South Africa
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; ULTRASOFT PSEUDOPOTENTIALS; OXYGEN VACANCIES; CO OXIDATION; TRANSITION; CATALYSTS; OXIDES; LOCALIZATION; SIMULATION; ALGORITHM;
D O I
10.1021/jp103181q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have applied density functional theory calculations with Hubbard corrections (DFT+U) to investigate the structural, electronic, and redox properties of Ti-substituted zirconia (111) surfaces. The calculations show that titanium dopants are likely to accumulate at the oxide surface, where an isolated dopant is 0.25 eV more stable than in the bulk. We have investigated in detail the relative distribution of dopants and oxygen vacancies at the surface and report the most stable configurations for each composition. It is found that the formation energy of oxygen vacancies decreases substantially in titanium-substituted surfaces with respect to undoped surfaces. The analysis of the electronic structure of the doped and reduced surfaces reveals that, when an O vacancy is created around an isolated Ti dopant, a Ti4+ -> Ti2+ reduction takes place, with the reduced cation in a high-spin configuration. However, if the vacancy is created in the vicinity of a pair of dopants, each Ti atom adopts a +3 oxidation state with an additional decrease in the vacancy formation energy.
引用
收藏
页码:15403 / 15409
页数:7
相关论文
共 78 条
[1]   STRUCTURE AND IONIC MOBILITY OF ZIRCONIA AT HIGH-TEMPERATURE [J].
ALDEBERT, P ;
TRAVERSE, JP .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (01) :34-40
[2]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[3]   Ceramic materials as supports for low-temperature fuel cell catalysts [J].
Antolini, E. ;
Gonzalez, E. R. .
SOLID STATE IONICS, 2009, 180 (9-10) :746-763
[4]  
Bader R. F. W., 1994, Atoms in Molecules: A Quantum Theory, V22
[5]   Surface and reduction energetics of the CeO2-ZrO2 catalysts [J].
Balducci, G ;
Kaspar, J ;
Fornasiero, P ;
Graziani, M ;
Islam, MS .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (03) :557-561
[6]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]   Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface [J].
Calzado, Carmen J. ;
Hernandez, Norge Cruz ;
Sanz, Javier Fdez .
PHYSICAL REVIEW B, 2008, 77 (04)
[9]  
Chase M., 1998, NIST-JANAF Thermochemical Tables, V1
[10]   Density functional study of the CO oxidation on a doped rutile TiO2(110):: Effect of ionic Au in catalysis [J].
Chrétien, S ;
Metiu, H .
CATALYSIS LETTERS, 2006, 107 (3-4) :143-147