Resistive switching materials for information processing

被引:917
作者
Wang, Zhongrui [1 ]
Wu, Huaqiang [2 ]
Burr, Geoffrey W. [3 ]
Hwang, Cheol Seong [4 ,5 ]
Wang, Kang L. [6 ]
Xia, Qiangfei [1 ]
Yang, J. Joshua [1 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] Tsinghua Univ, Inst Microelect, Beijing, Peoples R China
[3] IBM Res Almaden, San Jose, CA USA
[4] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea
[5] Seoul Natl Univ, Interuniv Semicond Res Ctr, Seoul, South Korea
[6] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA USA
关键词
PHASE-CHANGE MATERIALS; RANDOM-ACCESS-MEMORY; SPIN-ORBIT TORQUE; REAL-TIME OBSERVATION; DOMAIN-WALLS; ROOM-TEMPERATURE; IN-MEMORY; PERPENDICULAR MAGNETIZATION; LOGIC OPERATIONS; CROSSBAR ARRAY;
D O I
10.1038/s41578-019-0159-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Resistive switching materials enable novel, in-memory information processing, which may resolve the von Neumann bottleneck. This Review focuses on how the switching mechanisms and the resultant electrical properties lead to various computing applications. The rapid increase in information in the big-data era calls for changes to information-processing paradigms, which, in turn, demand new circuit-building blocks to overcome the decreasing cost-effectiveness of transistor scaling and the intrinsic inefficiency of using transistors in non-von Neumann computing architectures. Accordingly, resistive switching materials (RSMs) based on different physical principles have emerged for memories that could enable energy-efficient and area-efficient in-memory computing. In this Review, we survey the four physical mechanisms that lead to such resistive switching: redox reactions, phase transitions, spin-polarized tunnelling and ferroelectric polarization. We discuss how these mechanisms equip RSMs with desirable properties for representation capability, switching speed and energy, reliability and device density. These properties are the key enablers of processing-in-memory platforms, with applications ranging from neuromorphic computing and general-purpose memcomputing to cybersecurity. Finally, we examine the device requirements for such systems based on RSMs and provide suggestions to address challenges in materials engineering, device optimization, system integration and algorithm design.
引用
收藏
页码:173 / 195
页数:23
相关论文
共 300 条
[31]  
Brataas A, 2012, NAT MATER, V11, P372, DOI [10.1038/NMAT3311, 10.1038/nmat3311]
[32]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[33]   Recent Progress in Phase-Change Memory Technology [J].
Burr, Geoffrey W. ;
Brightsky, Matthew J. ;
Sebastian, Abu ;
Cheng, Huai-Yu ;
Wu, Jau-Yi ;
Kim, Sangbum ;
Sosa, Norma E. ;
Papandreou, Nikolaos ;
Lung, Hsiang-Lan ;
Pozidis, Haralampos ;
Eleftheriou, Evangelos ;
Lam, Chung H. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2016, 6 (02) :146-162
[34]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[35]   Phase change memory technology [J].
Burr, Geoffrey W. ;
Breitwisch, Matthew J. ;
Franceschini, Michele ;
Garetto, Davide ;
Gopalakrishnan, Kailash ;
Jackson, Bryan ;
Kurdi, Buelent ;
Lam, Chung ;
Lastras, Luis A. ;
Padilla, Alvaro ;
Rajendran, Bipin ;
Raoux, Simone ;
Shenoy, Rohit S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (02) :223-262
[36]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[37]   Voltage-Controlled Spintronic Stochastic Neuron Based on a Magnetic Tunnel Junction [J].
Cai, Jialin ;
Fang, Bin ;
Zhang, Like ;
Lv, Wenxing ;
Zhang, Baoshun ;
Zhou, Tiejun ;
Finocchio, Giovanni ;
Zeng, Zhongming .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[38]   Logic Computation in Phase Change Materials by Threshold and Memory Switching [J].
Cassinerio, M. ;
Ciocchini, N. ;
Ielmini, D. .
ADVANCED MATERIALS, 2013, 25 (41) :5975-5980
[39]   Domain wall nanoelectronics [J].
Catalan, G. ;
Seidel, J. ;
Ramesh, R. ;
Scott, J. F. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :119-156
[40]   Nanometer-Scale Phase Transformation Determines Threshold and Memory Switching Mechanism [J].
Chae, Byeong-Gyu ;
Seol, Jae-Bok ;
Song, Jeong-Hwan ;
Baek, Kyungjoon ;
Oh, Sang-Ho ;
Hwang, Hyunsang ;
Park, Chan-Gyung .
ADVANCED MATERIALS, 2017, 29 (30)