Optical soliton perturbation with full nonlinearity by extended trial function method

被引:14
作者
Biswas, Anjan [1 ,2 ]
Ekici, Mehmet [3 ]
Sonmezoglu, Abdullah [3 ]
Arshed, Saima [4 ]
Belic, Milivoj [5 ]
机构
[1] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[2] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[3] Yozgat Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[4] Univ Punjab, Dept Math, Lahore 54590, Pakistan
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
关键词
Solitons; Perturbation; Full nonlinearity; Non-Kerr law; TRAVELING-WAVE SOLUTIONS; EQUATION METHOD; GUIDES; SYSTEM;
D O I
10.1007/s11082-018-1701-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The extended trial function scheme is applied to retrieve soliton solutions to the perturbed nonlinear Schrodinger's equation with ten forms of fiber nonlinearity. Bright, dark and singular soliton solutions are retrieved that appear with their respective existence criteria. Some additional forms of nonlinear waves naturally emerge as a byproduct of the integration scheme.
引用
收藏
页数:58
相关论文
共 15 条
  • [1] Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
  • [2] Biswas A, 2018, J OPTOELECTRON ADV M, V20, P385
  • [3] Ekici M, 2017, OPT QUANT ELECTRON, V50, P1
  • [4] Optical solitons in DWDM system by extended trial equation method
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Zhou, Qin
    Biswas, Anjan
    Ullah, Malik Zaka
    Asma, Mir
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2017, 141 : 157 - 167
  • [5] Solitons in magneto-optic waveguides by extended trial function scheme
    Ekici, Mehmet
    Zhou, Qin
    Sonmezoglu, Abdullah
    Moshokoa, Seithuti P.
    Ullah, Malik Zaka
    Biswas, Anjan
    Belic, Milivoj
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 107 : 197 - 218
  • [6] Optical solitons with anti-cubic nonlinearity by extended trial equation method
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    Sonmezoglu, Abdullah
    Ullah, Malik Zaka
    Zhou, Qin
    Triki, Houria
    Moshokoa, Seithuti P.
    Biswas, Anjan
    [J]. OPTIK, 2017, 136 : 368 - 373
  • [7] ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS
    FOKAS, AS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) : 145 - 150
  • [8] Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation
    Geng, Xianguo
    Lv, Yanyan
    [J]. NONLINEAR DYNAMICS, 2012, 69 (04) : 1621 - 1630
  • [9] Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method
    Kumar, Sachin
    Singh, K.
    Gupta, R. K.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01): : 41 - 60
  • [10] An integrable generalization of the nonlinear Schrodinger equation on the half-line and solitons
    Lenells, J.
    Fokas, A. S.
    [J]. INVERSE PROBLEMS, 2009, 25 (11)