Traveling waves for a Lotka-Volterra competition system with diffusion

被引:13
作者
Yu, Zhi-Xian [1 ]
Yuan, Rong [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Traveling waves; Reaction-diffusion; Competition Lotka-Volterra systems; GLOBAL STABILITY; FRONTS; EXISTENCE; EQUATIONS; PERSISTENCE; SPEED;
D O I
10.1016/j.mcm.2010.11.061
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper addresses the existence of traveling waves for a two species competitive Lotka-Volterra reaction-diffusion system with discrete delays partial derivative/partial derivative t u(1)(chi, t) = d1 partial derivative(2)/partial derivative chi(2) u(1)(chi, t) + r(1)u(1)(chi, t)[1 - a(1)u(1)(chi, t) -b(1)u(1)(chi, t - tau(1)) - c(1)u(2)(chi, t - tau(2))], partial derivative/partial derivative t u(2)(chi, t) = d(2) partial derivative(2)/partial derivative chi 2 u(2)(chi, t) + r(2)u(2)(chi, t)[1 - a(2)u(2)(chi, t) -b(2)u(2)(chi, t - tau(3)) - c(2)u(1)(chi, t - tau 4)]. Our results can extend some existing ones for two species diffusion competition Lotka-Volterra systems. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1035 / 1043
页数:9
相关论文
共 29 条
[1]  
[Anonymous], ACTA MATH APPL SIN-E
[2]   AN APPLICATION OF THE GENERALIZED MORSE INDEX TO TRAVELING WAVE SOLUTIONS OF A COMPETITIVE REACTION-DIFFUSION MODEL [J].
CONLEY, C ;
GARDNER, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (03) :319-343
[3]   Travelling waves for delayed reaction-diffusion equations with global response [J].
Faria, T ;
Huang, W ;
Wu, JH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2065) :229-261
[6]   Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model [J].
Gourley, SA ;
Ruan, SG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (03) :806-822
[7]   Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity [J].
Huang, JH ;
Zou, XF .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (04) :925-936
[8]   Existence of traveling wave solutions in a diffusive predator-prey model [J].
Huang, JH ;
Lu, G ;
Ruan, SG .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (02) :132-152
[9]   Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays [J].
Huang, JH ;
Zou, XF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (02) :455-466
[10]   Traveling Wave Fronts of Reaction-Diffusion Systems with Delay [J].
Jianhong Wu ;
Xingfu Zou .
Journal of Dynamics and Differential Equations, 2001, 13 (3) :651-687