The transport of nanoparticles in blood vessels: The effect of vessel permeability and blood rheology

被引:137
|
作者
Gentile, Francesco [2 ]
Ferrari, Mauro [3 ,4 ,5 ,6 ]
Decuzzi, Paolo [1 ,2 ,3 ]
机构
[1] Politecn Bari, CEMeC, Bari, Italy
[2] Magna Graecia Univ Catanzaro, Ctr Bio Nanotechnol & Engn Med BioNEM, I-88100 Catanzaro, Italy
[3] Univ Texas Houston, Hlth Sci Ctr, Brown Fdn Inst Mol Med Prevent Human Dis, Houston, TX 77031 USA
[4] Univ Texas Houston, MD Anderson Canc Ctr, Houston, TX 77030 USA
[5] Rice Univ, Houston, TX 77251 USA
[6] Alliance NanoHlth, Houston, TX USA
关键词
transport equation; nanoparticles; Casson fluid; microcirculation;
D O I
10.1007/s10439-007-9423-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The longitudinal transport of nanoparticles in blood vessels has been analyzed with blood described as a Casson fluid. Starting from the celebrated Taylor and Aris theory, an explicit expression has been derived for the effective longitudinal diffusion (D-eff) depending non-linearly on the rheological parameter xi(c), the ratio between the plug and the vessel radii; and on the permeability parameters Pi and Omega; related to the hydraulic conductivity and pressure drop across the vessel wall, respectively. An increase of xi(c) or Pi has the effect of reducing D-eff, and thus both the rheology of blood and the permeability of the vessels may constitute a physiological barrier to the intravascular delivery of nanoparticles.
引用
收藏
页码:254 / 261
页数:8
相关论文
共 50 条
  • [21] Nanoparticles Bind to Endothelial Cells in Injured Blood Vessels via a Transient Protein Corona
    Lin, Zachary P.
    Ngo, Wayne
    Mladjenovic, Stefan M.
    Wu, Jamie L. Y.
    Chan, Warren C. W.
    NANO LETTERS, 2023, 23 (03) : 1003 - 1009
  • [22] Controlled drug delivery using the magnetic nanoparticles in non-Newtonian blood vessels
    Abu-Hamdeh, Nidal H.
    Bantan, Rashad A. R.
    Aalizadeh, Farhad
    Alimoradi, Ashkan
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4049 - 4062
  • [23] The effect of selected nanoparticles on rheological properties of human blood
    Michalczuk, Urszula
    Przekop, Rafal
    Moskal, Arkadiusz
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2022, 70 (01)
  • [24] Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability
    Chen, I-Chieh
    Hsiao, I-Lun
    Lin, Ho-Chen
    Wu, Chien-Hou
    Chuang, Chun-Yu
    Huang, Yuh-Jeen
    ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2016, 47 : 108 - 118
  • [25] Microcirculation and blood rheology in patients with cerebrovascular disorders
    Tikhomirova, Irina A.
    Oslyakova, Anna O.
    Mikhailova, Svetlana G.
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2011, 49 (1-4) : 295 - 305
  • [26] Effects of glucagon administration on microcirculation and blood rheology
    Komatsu, R
    Tsushima, N
    Matsuyama, T
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 1997, 17 (04) : 271 - 277
  • [27] Impaired Blood Rheology in Pulmonary Arterial Hypertension
    Yaylali, Yalin Tolga
    Kilic-Toprak, Emine
    Ozdemir, Yasin
    Senol, Hande
    Bor-Kucukatay, Melek
    HEART LUNG AND CIRCULATION, 2019, 28 (07) : 1067 - 1073
  • [28] Influence of Nanoparticles on Blood-Brain Barrier Permeability and Brain Edema Formation in Rats
    Sharma, Hari Shanker
    Hussain, Saber
    Schlager, John
    Ali, Syed F.
    Sharma, Aruna
    BRAIN EDEMA XIV, 2010, 106 : 359 - +
  • [29] Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study
    Tiwari, Ashish
    Chauhan, Satyendra Singh
    CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2019, 10 (01) : 155 - 172
  • [30] The role of olfactory transport in the penetration of manganese oxide nanoparticles from blood into the brain
    Romashchenko, A. V.
    Sharapova, M. B.
    Morozova, K. N.
    Kiseleva, E. V.
    Kuper, K. E.
    Petrovskii, D. V.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2019, 23 (04): : 482 - 488