Time Scales of a Chaotic Semiconductor Laser with Optical Feedback Under the Lens of a Permutation Information Analysis

被引:172
作者
Soriano, Miguel C. [1 ]
Zunino, Luciano [1 ,2 ,3 ]
Rosso, Osvaldo A. [4 ,5 ]
Fischer, Ingo [1 ]
Mirasso, Claudio R. [1 ]
机构
[1] Univ Illes Balears, Consejo Super Invest Cient, Inst Fis Interdisciplinar & Sistemas Complejos, E-07122 Palma de Mallorca, Spain
[2] Ctr Invest Opt CONICET La Plata CIC, RA-1897 Gonnet, Argentina
[3] Natl Univ La Plata, Fac Ingn, Dept Ciencias Basicas, RA-1900 La Plata, Argentina
[4] Univ Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, BR-31270901 Belo Horizonte, MG, Brazil
[5] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Chaos & Biol Grp, RA-1428 Buenos Aires, DF, Argentina
关键词
Chaos; optical feedback; permutation entropy; permutation statistical complexity; semiconductor lasers; time scale identification; DELAY IDENTIFICATION; COHERENCE COLLAPSE; SYNCHRONIZATION; COMPLEXITY; ENTROPY; SYSTEMS; DYNAMICS; OUTPUT; SERIES; EXTRACTION;
D O I
10.1109/JQE.2010.2078799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We analyze the intrinsic time scales of the chaotic dynamics of a semiconductor laser subject to optical feedback by estimating quantifiers derived from a permutation information approach. Based on numerically and experimentally obtained times series, we find that permutation entropy and permutation statistical complexity allow the extraction of important characteristics of the dynamics of the system. We provide evidence that permutation statistical complexity is complementary to permutation entropy, giving valuable insights into the role of the different time scales involved in the chaotic regime of the semiconductor laser dynamics subject to delay optical feedback. The results obtained confirm that this novel approach is a conceptually simple and computationally efficient method to identify the characteristic time scales of this relevant physical system.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 56 条
[1]   True and false forbidden patterns in deterministic and random dynamics [J].
Amigo, J. M. ;
Zambrano, S. ;
Sanjuan, M. A. F. .
EPL, 2007, 79 (05)
[2]   Synchronization of chaotic injected-laser systems and its application to optical cryptography [J].
AnnovazziLodi, V ;
Donati, S ;
Scire, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (06) :953-959
[3]  
[Anonymous], SYNCHRONIZATION U CO
[4]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[5]   Information-entropic analysis of chaotic time series: determination of time-delays and dynamical coupling [J].
Azad, RK ;
Rao, JS ;
Ramaswamy, R .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :633-641
[6]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[7]   Estimation of delay times from a delayed optical feedback laser experiment [J].
Bunner, MJ ;
Kittel, A ;
Parisi, J ;
Fischer, I ;
Elsasser, W .
EUROPHYSICS LETTERS, 1998, 42 (04) :353-358
[8]  
Cao YH, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046217
[9]   Quantifiers for randomness of chaotic pseudo-random number generators [J].
De Micco, L. ;
Larrondo, H. A. ;
Plastino, A. ;
Rosso, O. A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901) :3281-3296
[10]   The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing [J].
Feldman, David P. ;
McTague, Carl S. ;
Crutchfield, James P. .
CHAOS, 2008, 18 (04)