One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors

被引:114
作者
Li, Shengyang [1 ]
He, Wei [2 ]
Liu, Ben [1 ]
Cui, Jingqin [1 ]
Wang, Xinghui [3 ]
Peng, Dong-Liang [2 ]
Liu, Bin [4 ]
Qu, Baihua [1 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Peoples R China
[3] Fuzhou Univ, Sch Phys & Informat Engn, Inst Micro Nano Devices & Solar Cells, Fuzhou 350108, Peoples R China
[4] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Nickel sulfide; Three-dimensional carbon; Sodium-ion batteries; Sodium-ion hybrid capacitors; LONG-CYCLE LIFE; LITHIUM STORAGE; ANODE MATERIALS; POROUS CARBON; HIGH-ENERGY; PERFORMANCE; COMPOSITES; NANOSHEETS; DESIGN; ELECTRODE;
D O I
10.1016/j.ensm.2019.09.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three-dimensional design composing of porous carbon matrix (PCM) decorated with nickel sulfide nanoparticles (denoted as NiSx@PCM) was fabricated through a one-step hydrothermal process, and successfully utilized as an electrode material in high performance sodium-ion batteries (SIBs) and sodium-ion hybrid capacitors (SIHCs). The as-prepared NiSx@PCM delivered a high reversible capacity of 650 mAh g(-1) over 200 cycles at 0.5 A g(-1), outstanding rate capability (167 mAh g(-1) at as high as 20 A g(-1)), and excellent cycle performance (300 mAh g(-1) at 1 A g(-1) after 800 cycles) in the SIBs. In addition, SIHCs based on NiSx@PCM composite anodes and commercial activated-carbon cathodes behaved carried remarkably high energy densities of 99.3 and 52.2 Wh kg(-1) at power densities of 140 and 4480 W kg(-1), respectively. The significantly high-performance enhancement should be attributed to the excellent electron/ion transports within the three-dimensional active material-carbon network during charging/discharging with the in-situ growth of the more conducive nickel sulfide nanoparticles throughout the porous carbon matrix. This work presents a facile method to synthesize three-dimensional carbon matrix incorporating metal sulfide nanoparticles, as well as suggests new insights into further advancing nextgeneration high energy-density/power-density energy storage units by combining the merits of both batteries and supercapacitors.
引用
收藏
页码:636 / 643
页数:8
相关论文
共 52 条
[1]   Research progress in Na-ion capacitors [J].
Aravindan, Vanchiappan ;
Ulaganathan, Mani ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (20) :7538-7548
[2]   Yolk-Shell NiS2 Nanoparticle-Embedded Carbon Fibers for Flexible Fiber-Shaped Sodium Battery [J].
Chen, Qi ;
Sun, Shuo ;
Zhai, Teng ;
Yang, Mei ;
Zhao, Xiangyu ;
Xia, Hui .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[3]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[4]   General Synthesis of Dual Carbon-Confined Metal Sulfides Quantum Dots Toward High-Performance Anodes for Sodium-Ion Batteries [J].
Chen, Ziliang ;
Wu, Renbing ;
Liu, Miao ;
Wang, Hao ;
Xu, Hongbin ;
Guo, Yanhui ;
Song, Yun ;
Fang, Fang ;
Yu, Xuebin ;
Sun, Dalin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (38)
[5]   Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors [J].
Dai, Chao-Shuan ;
Chien, Pei-Yi ;
Lin, Jeng-Yu ;
Chou, Shu-Wei ;
Wu, Wen-Kai ;
Li, Ping-Hsuan ;
Wu, Kuan-Yi ;
Lin, Tsung-Wu .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12168-12174
[6]   Rational Synthesis and Assembly of Ni3S4 Nanorods for Enhanced Electrochemical Sodium-Ion Storage [J].
Deng, Jun ;
Gong, Qiufang ;
Ye, Hualin ;
Feng, Kun ;
Zhou, Junhua ;
Zha, Chenyang ;
Wu, Jinghua ;
Chen, Junmei ;
Zhong, Jun ;
Li, Yanguang .
ACS NANO, 2018, 12 (02) :1829-1836
[7]   NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries [J].
Dong, Caifu ;
Liang, Jianwen ;
He, Yanyan ;
Li, Chuanchuan ;
Chen, Xiaoxia ;
Guo, Lijun ;
Tian, Fang ;
Qian, Yitai ;
Xu, Liqiang .
ACS NANO, 2018, 12 (08) :8277-8287
[8]   Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries [J].
Guo, Qiubo ;
Ma, Yifan ;
Chen, Tingting ;
Xia, Quying ;
Yang, Mei ;
Xia, Hui ;
Yu, Yan .
ACS NANO, 2017, 11 (12) :12658-12667
[9]   Porous Ni3S4/C aerogels derived from carrageenan-Ni hydrogels for high-performance sodium-ion batteries anode [J].
Guo, Ruiqi ;
Li, Daohao ;
Lv, Chunxiao ;
Wang, Yu ;
Zhang, Huawei ;
Xia, Yanzhi ;
Yang, Dongjiang ;
Zhao, Xiaoliang .
ELECTROCHIMICA ACTA, 2019, 299 :72-79
[10]   Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries [J].
Hu, Zhe ;
Liu, Qiannan ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2017, 29 (48)